TOLERANCE OF SOME OLIVE STRAINS TO SALINITY STRESS

By

EBTESAM EL SAYED ABD ELHAMEED

B.Sc .Agric. Sci.(Pomology), Fac. Agric., Cairo Univ., 1999 M.Sc .Agric. Sci.(Pomology), Fac. Agric., Cairo Univ., 2009

THESIS

Submitted in partial fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Pomology)

Department of Pomology
Faculty of Agriculture
Cairo University
EGYPT

2018

Format Reviwer

Vice Dean of Graduate Stusies

APPROVAL SHEET

TOLERANCE OF SOME OLIVE STRAINS TO SALINITY STRESS

Ph.D. Thesis
In
Agric. Sci.(Pomology)

 $\mathbf{B}\mathbf{y}$

EBTESAM EL SAYED ABD ELHAMEED

B.Sc .Agric. Sci.(Pomology), Fac. Agric., Cairo Univ., 1999 M.Sc .Agric. Sci.(Pomology), Fac. Agric., Cairo Univ., 2009

APPROVAL COMMITTEE

Dr. MOHAMED ABOU RAWASH ALI BADR
Professor of Pomology, Fac.Agric., Ain Shams University
Dr. AYMAN EL SAYED AHMED SHABAN
Professor of Pomology, Fac.Agric., Cairo University
Dr. TAREK ABD EL ALEEM FAYED
Professor of Pomology, Fac.Agric., Cairo University
Dr. MOHAMED AHMED FAYEK
Professor of Pomology, Fac.Agric., Cairo University
Professor of Pomology, Fac.Agric., Cairo University

Date: 29 / 08 /2018

SUPERVISION SHEET

TOLERANCE OF SOME OLIVE STRAINS TO SALINITY STRESS

Ph.D. Thesis In Agric. Sci. (Pomology)

 $\mathbf{B}\mathbf{v}$

EBTESAM EL SAYED ABD ELHAMEED

B.Sc .Agric. Sci.(Pomology), Fac. Agric., Cairo Univ., 1999 M.Sc .Agric. Sci.(Pomology), Fac. Agric., Cairo Univ., 2009

SUPERVISION COMMITTEE

Dr. MOHAMED AHMED FAYEK

Professor of Pomology, Fac.Agric., Cairo University

Dr. TAREK ABD EL ALEEM FAYED

Professor of Pomology, Fac.Agric., Cairo University

Dr. EMTITHAL HASSAN EL SAYED

Head Research of Olive and Semi Arid Fruits, Horticultural Research Institute, ARC, Giza

Name of Candidate: Ebtesam El Sayed Abd El Hameed Degree: Ph.D.

Tital of Thesis: Tolerance of Some Olive Strains to Salinity Stress

Supervisors: Dr. Mohamed Ahmed Fayek

Dr. Tarek Abd El Aleem Fayed Dr. Emtithal Hassan El Sayed

Depatment: Pomology. **Branch**:

Approval: 29 / 08 / 2018

ABSTRACT

Potted experiment was conducted on transplants of five olive cultivars "Picual, Hamed, Arbiquena, Kalamata and Toffahi" besides four F1 hybrids "H61, H138, H107 and H69"to investigate the impact of salinity (6000& 9000 ppm and SAR-12) and possibility of alleviating salts hazarda through application of some recovering substances (magnetite, potassium silicate and kitasal). Results showed that, survival (%) and vegettive growth parameters (stem length & diameter, laterals&leaves numbers/ plant, leaf area, assimilation area/ plant and fresh & dry weight) were significantly varied depending on the studied salinity level, wherease; all parameters were significantly decreased as salt concentration increased. The physiological parameters revealed two confilected trends, whereas ossmotic potential was increased by salinity, but the reverse was found with transpiration rate. The chemical composition (leaf chlorophyll A & B, carotenoids, Cl, Na, K, Ca, N, P, total soluble sugars and proline) contents, showed two opposite trends i.e., (Cl, Na, Ca, total soluble sugars and proline) increased by salinity, while, the reverse was detected with (chlorophyll A & B, carotenoids, K, N and P). Meanwhile, hybrid 61 behaved as the highest salt tolerant genotype as compared with its relatively salt tolerant parents (Picual & Hamed cvs.), while; hybrid 69 recorded the lowest ones in both seasons. However, such salinity disorders were relatively allayed by any recovering treatments, wherease magnetite were the most effective followed by Ksilicate while kitasal had the least effect. In addition, leaf blade thickness upper and lower epidermis and spongy tissues of the olive transplant clearly increased in plants received the high saline water (9000 ppm) compare to the control transplants irrigated with tap water. The highest increase due to saline treatment was recorded for H61 and the least for H69 compared to their maternal parents Hamed and Toffahi. Meanwhile, thickness of palisade tissue, midrib, xylem, phloem and fibers thickness clearly reduce as salinity treatment. However, the salt tolerant of olive genotypes under investigation could be identified by cultivar-specific ISSR markers. Some ISSR markers may be linked to salt tolerance. The TE primer revealed polymorphism in relation to the salt tolerance of the highest salt tolerant genotype (61 hybrid).

Keywords: Olive, genotypes, salt stress, magnetite, K-silicte, kitasal, anatomy, ISSR-PCR, salt tolerance.

DEDICATION

I dedicate this work to my husband for all the support he lovely offered during my postgraduate studies.

ACKNOWLEDGMENT

I would like to express my sincerest thanks and gratitude to. Dr. Mohamed Ahmed Fayek Professor of Pomology, Faculty of Agriculture, Cairo University, for his supervision guidance, providing facilities scientific during investigation, valuable advice. kind encouragement, constructive criticism and expert guidance. I am also indebted to Dr. Tarek Abd El-Aleem Fayed Professor of Pomology, Faculty of Agriculture, Cairo University, for his supervission and follow up of the study. Sincere thanks are also due to Dr. Emtithal Hassan El-Sayed Head Research of Olive and Semi Arid Fruits, Horticultural Research Institute, ARC, Giza, for her kind help, continuous encouragement and supervision during the preparation of this work

Grateful appreciation is also extended to all staff members of the Olive and Semi Arid Zone Fruits Department, HRI,ARC for the general assistance.

Special deep appreciation is given to my husband, my parents, my brother and my sister for their support me.

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
1. Survival percentage
a. Effect of salinized water on survival percentage
b. Effect of salinized water and some alleviating compounds on survival percentage
2. Vegetative growth parameters
a. Stem length
1. Effect of salinized water on stem length
2. Effect of salinized water and some alleviating compounds on stem length
b. Stem diameter
1. Effect of salinized water on stem diameter
2. Effect of salinized water and some alleviating compounds on stem diameter
c. Leaves number per plant
Effect of salinized water on leaves number per plant
2. Effect of salinized water and some alleviating compounds on leaves number per plant
d. Lateral shoots number per plant
Effect of salinized water on laterals number per plant
2. Effect of salinized water and some alleviating compounds on laterals number per plant
e. Leaf area
1. Effect of salinized water on leaf area
2. Effect of salinized water and some alleviating

compounds on leaf area	
f. Assimilation area	
1. Effect of salinized water on assimilation area	
2. Effect of salinized water and some allevi compounds on assimilation area	_
g. Fresh and dry weight of leaves, shoots roots	
1. Effect of salinized water on fresh and dry weighted leaves, shoots and roots	_
2. Effect of salinized water and some allevi compounds on fresh and dry weight of le shoots and roots	eaves,
3. Physiological characteristics	
a. Osmotic potential	
1. Effect of salinized water on osmotic potential	
2. Effect of salinized water and some allevi compounds on osmotic potential	_
b. Transpiration rate	
1. Effect of salinized water on transpiration rate	
2. Effect of salinized water and some allevi compounds on transpiration rate	_
l. Chemical content	
a. Leaf photosynthetic pigments content	
Effect of salinized water on leaf photosynt pigments content	
2. Effect of salinized water and some allevi compounds on leaf photosynthetic pign content	nents
b. Minerals content	
1. Chloride content	
a. Effect of salinized water on chloride co	ontent