

ADOPTING DIGITAL MANUFACTURING TECHNIQUE FOR LARGE SPAN STRUCTURE USING MEMBRANE MATERIALS

BY

Yasmin Tawfik Hussein Tawfik

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Architectural Engineering

ADOPTING DIGITAL MANUFACTURING TECHNIQUE FOR LARGE SPAN STRUCTURE USING MEMBRANE MATERIALS

By **Yasmin Tawfik Hussein Tawfik**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Architectural Engineering

Under the Supervision of

Dr. Passaint Mohamed Mossoud

Professor of building technology
Architecture Department
Faculty of Engineering, Cairo University

Assistant Professor of architecture
Architecture Department
Faculty of Engineering, French University in
Egypt

Prof. Dr. Hesham Sameh Hussien

Adopting Digital Manufacturing Technique for Large Span Structure Using Membrane Materials

Yasmin Tawfik Hussein Tawfik

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Architectural Engineering

Approved by the **Examining Committee**

Prof. Dr. Hesham Sameh Hussien Sameh Thesis Main Advisor

Associate Prof. Tarek Ibrahim Nasreldin **Internal Examiner**

Prof. Dr. Hisham Mahmoud Aref

External Examiner

- Professor of architecture and housing in Faculty of Engineering, Al-fayoum University

Engineer's Name: Yasmin Tawfik Hussein Tawfik

Date of Birth: 11/06/1989 **Nationality:** Egyptian

E-mail: Yasminyawfik11689@gmail.com

Phone: 01015420676

Address: 15 sen, new fosstat city, misr el gadima

Registration Date: 01/10/2011 **Awarding Date:** / /2018

Degree: Master of Science

Department: Architectural Engineering

Supervisors:

Prof. Dr. Hisham Sameh Hussien Sameh Dr. Passaint Mohamed Mossoud

- Assistant Professor of architecture in Faculty of

Engineering, French University in Egypt

Prof. Dr. Hisham Sameh Hussien Sameh(Thesis Main Advisor) Associate Prof. Tarek Ibrahim Nasreldin (Internal Examiner) Prof. Dr. Hesham Mahmoud Aref (External Examiner)

- Professor of architecture and housing in Faculty of Engineering, Al-fayoum University

Title of Thesis:

Adopting digital manufacturing technique for large span structure using membrane materials

Kev Words:

Membrane structures – Digital technology in architecture – Digital manufacturing – New Materials – computer-integrated manufacturing.

Summary:

Membrane structures are hugely popular in architectural design and are increasing in their abundance within buildings. There is an increasing trend concerning the use of membrane structures within architectural design. The features of the membrane structure have been provided; an analysis of the strengths and weaknesses provides strength to the reasoning behind its use. This dissertation examines a variety of different factors concerning the membrane structures. It provides a detailed study of the use of membrane structures within building design, such as the structural components and mechanical usages, these efforts aimed at increasing buildings efficiency, saving and producing alternative power sources, reducing costs and ensuring the ease of implementation and maintenance.and using of Digital manufacturing has been considered, over the last decade, as a highly promising set of technologies for reducing product development times and cost as well as for addressing the need for customization, increased product quality, and faster response to the market. This paper describes the evolution of information technology systems in manufacturing, outlining their characteristics and the challenges to be addressed in the future.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all source used and have cited them in the references section.

Name: yasmin tawfik hussein Date: /10/2018

Signature:

Acknowledgments

Firstly, I sincerely thank God for being able to complete my thesis. I wish warmly to thank my supervisors Prof. Dr. Hisham Sameh Hussien Sameh & Dr. Passaint Mohamed Mossoud for their guidance, criticism, encouragement and invaluable support throughout the study.

I wish to express my deepest gratitude to my family. I owe sincere and earnest gratitude to my dear father, mother for them endless love and support throughout my life as well as my graduate studies; and my husband Ahmed and my little son Selim and my sister Nesma and brother Ismail for their support & encouragement.

I would like to gratefully thank to all my friends for their invaluable technical and moral support.

Without the kind help of all of the above, the completion of this study would not have been possible.

Table of Contents

DISCLAIMER	I
ACKNOWLEDGMENTS	II
TABLE OF CONTENTS	III
LIST OF TABLES	IX
LIST OF FIGURES	VIII
INTRODUCTION	XVI
ABSTRACT	XX
CHAPTER 1: MEMBRANE STRUCTURES IN ARCHITECTURE	1
1.1.The History Of Membrane Structures:	2
1.2.Traditional Reasoning Why Membrane Structures Are Ber The Environment:	
1.3. Types Of Membrane Structure :	
1.3.1. Tension And Suspension Membrane Structure :	
1.3.2.Frame Membrane Structure:	
1.3.3.Air-Supported Or Air-Inflated Membrane Structure:.	
1.4.Design Concept Of Membrane Structure:	
1.4.1.Form-Finding Analysis:	
1.4.2.Loading Analysis:	
1.4.3.Cutting Pattern Analysis:	
1.5.Form and behavior of fabric structure:	
1.6.Types Of Building Used In Modern Membrane Coverings	
1.6.1.Air-Inflated Structure:	14
1.6.2.Air-Supported Structure:	15
1.6.3.Cable-Restrained, Air-Supported Structure:	16
1.6.4.Membrane-Covered Cable Structure:	16
1.6.5.Membrane-Covered Frame Structure:	17
1.6.6.Noncombustible Membrane Structure:	17
1.7.Types Of Membrane Materials	18
1.7.1 Diagria Matariala.	10

	1.7.2.Fabric Materials:	18
	1.7.2.1. PVC Type Membrane Material:	18
	1.7.2.2.PTFE Type Membrane Material:	19
	1.7.2.3.EPTFE Type Membrane Material:	19
	1.7.3.Common Characteristics Of Membrane Materials:	19
	1.7.4.Costs:	20
	1.7.5.Sustainability:	20
	1.7.5.1.Sustainability In Design:	20
	1.7.5.2.Sustainability In The Workplace:	21
	1.7.6.Response From Manufacturers Of Synthetic Fabrics:	22
1.8.Su	mmary:	23
CHAPTER 2	: MEMBRANE MATERIALS IN ARCHITECTURE	24
2.1.ET	FE Type Membrane Material (Plastic Type):	26
	2.1.1.Overview Of ETFE:	26
	2.1.2. Various Types Of ETFE Film	27
	2.1.3. Physical Properties	27
	2.1.3.1.Mechanical Characteristics Of ETFE	28
	2.1.3.2.Weight	28
	2.1.3.3.Flexibility	28
	2.1.4.Safety – Explosion Risk	29
	2.1.5.Structural And Construction Properties	29
	2.1.6.Span	33
	2.1.7.Climate Factors And External Influences	33
	2.1.7.1.Thermal Characteristics – Insulation	33
	2.1.7.2.Fire Performance	34
	2.1.7.3.Cleaning	34
	2.1.8.Environmental Factors	35
	2.1.8.1.Transparency And Solar Control	35
	2.1.8.2.Energy Consumption	35
	2.1.8.3.Environmental Benefits	36
	2.1.8.4.Acoustics	37
	2.1.0 Other Features	37

	2.1.10.Sustainability/Energy Efficiency	38
	2.1.11.Further Development	39
	2.1.12.Advantage Of Using ETFE For Building Covers:	39
	2.1.13.Benefits Of ETFE:	40
	2.2.PTFE Type Membrane Material (Elastic Type):	41
	2.2.1.Overview Of PTFE:	41
	2.2.2.Types Of PTFE Material:	42
	2.2.3.Physical Properties:	43
	2.2.3.1.Mechanical Characteristics Of PTFE:	44
	2.2.3.2.Weight:	44
	2.2.3.3.Flexibility:	45
	2.2.4.Safety – Explosion Risk:	45
	2.2.5.Structural And Construction Properties:	45
	2.2.6.Span :	46
	2.2.7.Climate Factors And External Influences:	46
	2.2.7.1. Thermal Characteristics – Insulation:	46
	2.2.7.2.Fire Performance:	47
	2.2.7.3.Cleaning:	47
	2.2.8.Environmental Factors:	47
	2.2.8.1.Transparency And Solar Control:	47
	2.2.8.2.Energy Consumption:	48
	2.2.8.3.Environmental Benefits:	48
	2.2.8.4.Acoustics:	48
	2.2.9.Other Features :	49
	2.2.10.Sustainability/Energy Efficiency:	49
	2.2.11.Advantage Of Using PTFE For Building Covers:	49
	2.2.12.Benefits Of PTFE:	49
	2.3.Different Between ETFE And PTFE Materials:	50
	2.4. Comparison With Other Materials:	51
	2.5.Summary:	52
CHAP	PTER 3: COMPUTER INTEGRATED MANUFACTURING	53
	3.1.Evolution Of Computer Integrated Manufacturing:	54

3.2.Features Of General Manufacturing System :	55
3.3.The CIM System Definitions :	56
3.4.CIM Hardware And Software :	57
3.4.1. CIM Hardware :	57
3.4.2.CIM Software	57
3.5.Nature And Role Of The Elements Of CIM System:	58
3.6.CIM Structure:	58
3.7.Components Of CIM:	59
3.7.1.Management Information System(MIS):	59
3.7.1.1.Basic Concept Of ERR (Enterprise Resource Pl	anning):
	59
3.7.1.2.Manufacturing Resource Planning:	59
3.7.1.3.Just-In-Time :	61
3.7.2.CAD / CAPP / CAM Systems (Computer Aided Techniq	ues):61
3.7.2.1.Computer Aided Design(CAD):	61
3.7.2.2.Computer Aided Process Planning(CAPP) :	62
3.7.2.3.Computer Aided Manufacturing(CAM):	63
3.7.2.4.CAD / CAPP / CAM Integrations :	63
3.7.3.Computer – Aided Engineering (CAE):	64
3.7.4.Computer – Aided Quality Assurance And (CAQ):	65
3.7.5.Computer – Aided Quality Management System :	65
3.7.5.1.The Quality-Planning System:	65
3.7.5.2.The Computer-Aided Quality Inspection And Q	uality
Data Collection:	66
3.7.5.3.Quality Assessment And Control:	66
3.7.5.4.Integrated Quality Management	66
3.7.6.Production Planning And Control (PPC):	67
3.7.7.Computer Network And Data Management Systems :	67
3.8.Three- Dimensional Design Process	68
3.9.Digital Fabrication, File To Factory	69
3.9.1.Two- Dimensional Cutting	69
3.9.2.Subtractive Fabrication	70

3.9	9.3.Involves Additive Fabrication	70
3.9	9.4.Formative Fabrication	71
3.10.Asse	mbly	71
3.11.Build	ding Skin:	72
3.12. The	Use Of Membrane Materials Using CIM:	73
3.13.Bene	efits From CIM:	74
3.14.Sum	mary:	75
CHAPTER 4 : A	NALYSIS OF CASE STUDIES	76
4.1.Introd	duction:	77
4.2.Types	Of Building:	77
4.3.Criter	ria Of Analysis:	78
4.4.Analy	rsis Of Case Studies:	79
4.4	4.1.Beijing National Aquatic Center "The Water Cube":	79
	4.4.1.1.Design Description:	80
	4.4.1.2.The Structure:	81
	4.4.1.3.Solar Energy:	83
	4.4.1.4.Lighting:	84
	4.4.1.5.Materials:	84
	4.4.1.6.Computer Integrated Manufacturing:	92
4.4	4.2.Millennium Dome:	94
	4.4.2.1.Design Description:	95
	4.4.2.2.The Structure:	95
	4.4.3.3.Solar Energy:	97
	4.4.3.4.1.Lighting:	98
	4.4.3.5.Materials:	98
	4.4.3.6.Computer Integrated Manufacturing:	105
-	oarison Between Beijing National Aquatic Center And M	
	CONCLUSION AND RECOMMENDATIONS	
	usion:	
	nmendations:	
~.=.IXCCUI		1 AV

List of Tables

Chapter 1 : Membrane Structures in Architecture		
Number of tables	page	
Table 1-1: The significant weight reduction compared to alternative transparent or translucent materials	5	
Chapter 2 : Membrane Materials in Architecture		
Number of tables	page	
Table 2-1: Various Types of ETFE Film	27	
Table 2-2: Comparson between Types of PTFE Material	43	
Table 2-3: Different between ETFE and PTFE Materials	50	
Table 2-4 : Comparison between ETFE, PTFE Materials and other materials	51	
Chapter 4 : Analysis of Case Studies		
Number of tables	page	
Table 4-1: National Aquatics Center data	79	
Table 4-2: Millennium Dome data	94	
Table 4-3: Comparison between Beijing National Aquatic Center and Millennium Dome	107	

List of Figures

Chapter 1 : Membrane Structures in Architecture	
Number of Figure	page
Figure 1-1: German Pavilion Expo, 1967, Frei Otto	2
Figure 1-2: World's first membrane shell structure in 1896	3
Figure 1-3: Membrane roofing at Olympic Stadium in Munich 1972	3
Figure 1-4: Jiangsu Nantong Stadium with retractable membrane roofing system	3
Figure 1-5: Shenzhen Opera House	3
Figure 1-6: Tenggarong Madya Stadium	3
Figure 1-7: Pedestrian street in Shenzhen	3
Figure 1-8: Wuhu Stadium	4
Figure 1-9: Pasar Kapiten in Palembang	4
Figure 1-10: Olympic Stadium, Berlin (2004)	6
Figure 1-11: Gottlieb Daimler Stadium, Stuttgart (1993)	6
Figure 1-12: Stadium Mário Filho (Maracanã), Rio de Janeiro (2013)	7
Figure 1-13: National Stadium, Warsaw (2011)	7
Figure 1-14: Venetian Hotel in Shenzhen	8
Figure 1-15: Tension membrane at main boulevard of 2010 Shanghai World Expo	8
Figure 1-16: Tension membrane in 2010 Shanghai World Expo	8
Figure 1-17: Membrane roofing of Tenggarong Madya Stadium	9
Figure 1-18: Frame structure supporting the membrane	9
Figure 1-19: Membrane during air inflation	10
Figure 1-20: Air-supported membrane structure in Beijing	10

Figure 1-21: Finite element method for complicated membrane shape analysis	11	
Figure 1-22: Anticlastic surface	12	
Figure 1-23:Cone	13	
Figure 1-24: Arched Saddle	13	
Figure 1-25:Hyper	13	
Figure 1-26: Ridge and Valley	13	
Figure 1-27: Air-inflated structure	15	
Figure 1-28: Air-supported structure	16	
Figure 1-29: Cable-restrained, air-supported structure	16	
Figure 1-30: Membrane-covered cable structure	17	
Figure 1-31: Membrane-covered frame structure	17	
Figure 1-32: Noncombustible membrane structure	17	
Figure 1-33: The "Cube" Swimming Hall at 2008 Beijing Olympic	18	
Figure 1-34: PVC type membrane	18	
Figure 1-35: PTFE type membrane	19	
Figure 1-36: Norway Pavilion in 2010 World Expo using ePTFE membrane	19	
Chapter 2 : Membrane Materials in Architecture		
Number of Figure	page	
Figure 2-1: Denver International Airport	25	
Figure 2-2: The San Diego Convention Center	25	
Figure 2-3: The Georgia Dome	25	
Figure 2-4: Various configurations of one, two and three-layer ETFE foil cushions	26	
Figure 2-5: Roof of the Olympic Stadium: Berlin, Germany	28	
Figure 2-6: varying cushion arrangements will dictate the structural	30	

grid	
Figure 2-7: Single layer of ETFE	30
Figure 2-8: Kum-Ho model house, Seoul Korea	31
Figure 2-9: Double Layer of ETFE	31
Figure 2-10: Triple Layer of ETFE	31
Figure 2-11: Sahara star hotel mumble, Atrium	32
Figure 2-12: Shen Zhen ocean plaza, indoor water park	32
Figure 2-13: Connection Details of ETFE films	32
Figure 2-14: indication of cushion spans and supports over varying distances	33
Figure 2-15: Insulation of ETFE cushions	34
Figure 2-16: Fire Performance	34
Figure 2-17: Transparency of ETFE material	35
Figure 2-18: Light transmittance chart by wave length (comparison with other materials)	35
Figure 2-19: Air Inflation System	36
Figure 2-20: Acoustics will need serious consideration as the design develops to allow for the suitable subdivision of spaces to protect them and the site surroundings from noise transmission	37
Figure 2-21: By combining 1 translucent and 2 printed ETFE films into a 3 layer design and moving the middle layer up and down, you can control the amount of light that is transmitted to the inside.	38
Figure 2-22: Advantage of using ETFE for building covers	40
Figure 2-23: ETFE Advantages	40
Figure 2-24: BC Place Stadium	41
Figure 2-25: Shanghai, China using PTFE-coated glass fiber	42
Figure 2-26: Fritz-Lipmann-Institute, Jana - translucent facade made of PTFE glass mesh fabric	42
Figure 2-27: Silicone-coated glass fiber	42
Figure 2-28: PTFE membrane hollow structure	44