CHEMICAL, PHYSICAL AND TECHNOLOGICAL EVALUATIONS OF AUSTRALIAN WHEAT MILLING STREAMS

By

AHMED ATEF ADLY

B.Sc. Agric. Sci. (Poultry), Fac. Agric., Menoufia Univ., 2003

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Food Science)

Department of Food Science Faculty of Agriculture Cairo University EGYPT

2018

APPROVAL SHEET

CHEMICAL, PHYSICAL AND TECHNOLOGICAL EVALUATIONS OF AUSTRALIAN WHEAT MILLING STREAMS

M.Sc. Thesis
In
Agricultural Sci. (Food Science)

By

AHMED ATEF ADLY

B.Sc. Agric. Sci. (Poultry), Fac. Agric., Menoufia Univ., 2003

APPROVAL COMMITTEE

Dr. IBRAHIM RIZK SAIED AHMED
Professor of Food Science, Fac. Agric., Ain Shams University
Dr. MOHAMED HASSAN ALY HUSSEIN
Associate Professor of Food Science, Fac. Agric., Cairo University
Or. AHMED MAHMOUD ALIAN
Professor of Food Science, Fac. Agric., Cairo University
Dr. MAHMOUD ALY AHMED ALY BEKHEET
Associate Professor of Food Science, Fac. Agric., Cairo University

SUPERVISION SHEET

CHEMICAL, PHYSICAL AND TECHNOLOGICAL EVALUATIONS OF AUSTRALIAN WHEAT MILLING STREAMS

M. Sc. Thesis In Agricultural Sci. (Food Science)

By

AHMED ATEF ADLY

B.Sc. Agric. Sci.(Poultry), Fac. Agric., Menoufia Univ., 2003

SUPERVISION COMMITTEE

DR. AHMED MAHMOUD ALIAN

Professor of Food Science, Fac. Agric., Cairo University

DR. MAHMOUD ALY AHMED ALY BEKHEET Associate Professor of Food Science, Fac. Agric., Cairo University Name of Candidate: Ahmed Atef Adly Degree: M.Sc.

Title of Thesis: Chemical, physical, and technological evaluations

of Australian wheat milling streams.

Supervisors: Dr. Ahmed Mahmoud Alian

Dr. Mahmoud Aly Ahmed Aly Bekheet

Department: Food Science

Approval: 30 / 06 / 2018

ABSTRACT

This research was conducted to study the chemical and physical characteristics of Australian soft and hard wheat and their flour (76% extraction) as well as their break and reduction flour streams. The obtained results indicated that protein and ash contents were increased as the number of stream was increased .All stream samples showed falling number more than the optimum values (250 sec), which indicates the low α - amylase activity. Different color values were found for the streams from both soft and hard flours. The results indicated that the wet and dry gluten contents of all hard flour streams were higher than those of soft flour streams. The results of farinograph and extensograph tests showed that dough of all streams of the Australian hard flour was stronger than those of Australian soft flour. The steams of both types of flour have been divided to three groups according to gluten content and rheological characteristics. The variation in all the studied characteristics could be utilized in production of different types of from the parent flour for production of different bakery products with high quality and nutritive values.

Key words: Hard wheat – soft wheat - flour – milling – streams

Dedication

I dedicate this work, to my Father for supports and subsidized and mother and wife for all support the lovely offered during my post-graduate studies

Acknowledgment

I wish to express my sincere thanks, deepest gratitude and appreciation to dr. Ahmed Mahmoud Alian, professor of food science faculty of agriculture Cairo university, and dr. Mahmoud Aly Ahmed Bekheet associate professor of food science faculty of agriculture Cairo university, for suggesting the problem, supervision continued assistance, and guidance through the study and their revision of manuscript of this thesis and for all helps

Grateful appreciation is also extended to all staff members of the food science department, science faculty of agriculture Cairo University.

Grateful appreciation is given to my father, mother, wife, my brother and sister's . Also I feel deeply grateful to my country Egypt.

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
 Physicochemical properties of wheat grains Physicochemical properties of wheat flours
3. Physicochemical properties of wheat flour streams
4. Utilization of wheat flour streams in production o bakery products
MATERIALS AND METHODS
RESULTS AND DISCUSSIONS
1.Chemical contents of Australian soft and hard wheat varieties and its flours
2. Physical properties of Australian soft and hard wheat varieties and its flours
3. Rheological properties of Australian soft and hard flours
4. Chemical and physical evaluation of Australian soft and hard wheat flours and its streams
5. Rheological properties of Australian soft and hard wheat Flours and its streams
6. Formation of streams groups for optimizing utilization in bakery products
7. Rheological properties of streams groups
8. Sensory evaluation of bakery products produced from Australian soft and hard wheat flour and its streams group
SUMMARY
REFERENCES
ARABIC SUMMARY

LIST OF TABLES

No	Title	Page
1.	Chemical contents of Australian soft and hard wheat verities	37
2.	Chemical contents of wheat flour (76% extraction) of both Australian soft and hard wheat varieties	38
3.	Physical properties of Australian soft and hard wheat varieties	39
4.	Physical properties of wheat flour(76% extraction) of both Australian soft and hard wheat varieties	40
5.	Farinograph parameters of Australian soft and hard wheat flour (76 % extraction	41
6.	Extensograph parameters of Australian hard and soft wheat flour (76 % extraction)	41
7.	Chemical constituents of Australian soft wheat flour (76% extraction)and its streams	44
8.	Chemical constituents of Australian hard wheat flour (76% extraction) and its streams	45
9.	Gluten contents of Australian soft and hard wheat flour (76% extraction) and its streams	47
10.	Color values of Australian soft and hard wheat flour (76% extraction) and its streams	49
11.	Falling number values of Australian soft and hard wheat flour (76% extraction) and its streams	51
12.	Farinograph parameters for Australian soft wheat flour (76% extraction) and its streams	53

13.	Farinograph parameters for Australian hard wheat flour (76% extraction) and its streams	54
14.	Extensograph parameters of Australian soft wheat flour (76% extraction)and its stream	63
15.	Extensograph parameters of Australian hard wheat flour (76% extraction) and its stream	64
16.	Australian hard and soft flour streams group's formation	70
17.	Wet and dry gluten contents of both Australian soft and hard wheat flour and its streams groups	71
18.	Farinograph parameters of Australian hard wheat flour streams groups	72
19.	Farinograph parameters of Australian soft wheat flour streams groups	73
20.	Extensograph parameters of Australian hard wheat flour streams groups	76
21.	Extensograph parameters of Australian soft wheat flour streams groups	76
22.	Sensory evaluation of pan bread made from Australian hard wheat flour and its streams groups	80
23.	Sensory evaluation of flat bread made from Australian hard wheat flour and its streams groups	82
24.	Sensory evaluation of sponge cake made from Australian hard wheat flour and its streams groups	84
25.	Sensory evaluation of biscuit made from Australian hard wheat flour and its streams groups	86
26.	Sensory evaluation of pan bread made from Australian soft wheat flour and its streams groups	88

27.	Sensory evaluation of flat bread made from Australian soft wheat flour and its streams groups	90
28.	Sensory evaluation of sponge cake made from Australian soft wheat flour and its streams groups	92
29.	Sensory evaluation of biscuit made from Australian soft wheat flour and its streams groups	94

List of figures

No.	Title	Page
1.	Wheat Grain composition.	2
2.	Milling of wheat grains	3
3.	Farinograms of Australian soft wheat flour and its flour streams	56
4.	Farinograms of Australian hard wheat flour and its flour streams	59
5.	Extensograms of Australian soft wheat flour and its flour streams	65
6.	Extensograms of Australian hard wheat flour and its flour streams	68
7.	Farinograms of Australian hard wheat flour streams groups	74
8.	Farinograms of Australian soft wheat flour streams groups	75
9.	Extensograms of Australian hard wheat flour streams groups	77
10.	Extensograms of Australian soft wheat flour streams groups	78
11.	Pan bread made from Australian hard wheat flour and its streams groups	81
12.	Flat bread made from Australian hard wheat flour and its streams groups	83
13.	Sponge cake made from Australian hard wheat flour and its streams groups	85

14.	Biscuit made from Australian hard wheat flour and its streams groups	87
15.	Pan bread made from Australian soft wheat flour and its streams groups	89
16.	Flat bread made from Australian soft wheat flour and its streams groups	91
17.	Sponge cake made from Australian soft wheat flour and its streams groups.	93
18.	Biscuit made from Australian soft wheat flour and its streams groups	95

INTRODUCTION

Wrigley (2009) reviewed wheat as widely cultivated as a cash crop because it produces a good yield per unit area, grows well in a temperate climate even with a moderately short growing season, and yields a versatile flour. In the United States, wheat is classified based on kernel hardness such as hard or soft, growing season such as spring or winter, and grain color such as white or red. The characteristics of each class of wheat affect milling and baking when used in food products. Most wheat is mainly consumed in the form of baked goods; therefore, wheat grains must be milled to produce flour prior to consumption. Wheat is also used as an ingredient in compound feedstuffs, starch production and as a feed stock in ethanol production. Flour milling has two objectives. First, it is a process that separates the endosperm from bran and germ. Second, it involves grinding the endosperm to fine flour. Wheat kernels have three main parts, the endosperm, the germ, and the bran. Wheat flour is obtained from the endosperm.

The wheat grain (Fig.1) contains 2-3% germ, 13-17% bran and 80-85% mealy endosperm (all constituents converted to a dry matter basis). The bran (outer layers of wheat grain) is made up of several layers, which protect the main part of the grain. Bran is rich in B vitamins and minerals; it is separated from the starchy endosperm during the first stage of milling. In order to protect the grain and endosperm material, the bran comprises water-insoluble fiber. More than half the bran consists of fiber components (53%). Chemical composition of wheat bran fiber is complex, but it contains, essentially,

cellulose and pentose's, polymers based on xylose and arabinose, which are tightly bound to proteins. These substances are typical polymers present in the cell walls of wheat and layers of cells such as aleurone layer. Proteins and carbohydrates each represent 16% of total dry matter of bran. The mineral content is rather high (7.2%). The two external layers of the grain (pericarp and seed coat) are made up of dead empty cells. The cells of the inner bran layer- aleurone layer are filled with living protoplasts. This explains the rather high levels of protein and carbohydrate in the bran. There are large differences from the levels of certain amino acids in the aleurone layer and those in flour. Glutamine and proline levels are only about one half, while arginine is treble and alanine, asparagine, glycine, histidine and lysine are double those in wheat flour (Sramkovaaet al. 2009)

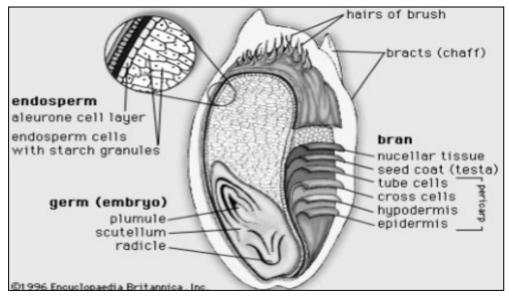


Fig. 1. Wheat grain composition.

Ziegler and Greer (1978) reported that the first stage of the modern flour milling process is the break system, in which wheat kernel is opened up and the contents released so that the endosperm may be separated from the bran. The best way for opening up wheat kernels has been to pass them through succession of pairs of spirally corrugated rolls driven at different speeds. The rolls are progressively closer together and more finely corrugated throughout the four or five breaks common in the modern flour milling process.

Wheat milling by roller mills (Fig.2) aimed to obtain mainly refined wheat flour. Particle size reduction in roller milling is achieved by passing cleaned and conditioned wheat through break and reduction rolls. The flour obtained from each roll is blended to obtain straight run flour (Prabhasankar *et al.*2000). However, increasing roll gap changed the balance towards more large particles, but had little effect on the quantity of particles in the middle size range.

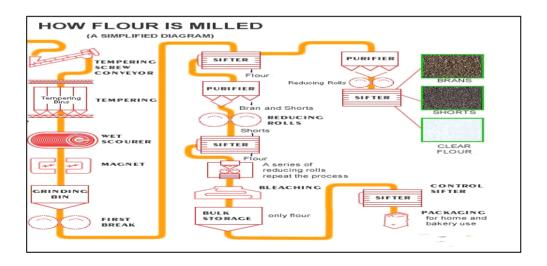


Fig.2.Milling of wheat grains.