

Efficient Multiple Access Technique for Future Generation Wireless Systems

A Thesis

Submitted in partial fulfillment for the requirements for the degree of Doctor of Philosophy in Communications Engineering (Electronics and Communications Engineering)

By Mohamed Abdelhamed

B.Sc. in Electrical Engineering, Communication and Computer Engineering Dept., Higher Institute of Engineering at Elshorouk, El-Shorouk Academy, 2007

M.Sc. in Electrical Engineering, Electronics and Communications Engineering Dept. Minoufiya University, 2013

Supervised by

Prof. Abdelhalim Abdelnaby Zekry

Electronics and Communications Engineering Dept., Faculty of Engineering Ain Shams University

Prof. Salah Sayed Ibrahim Elagooz

Head of Communication and Computer Engineering Dept., Higher Institute of Engineering at Elshorouk, El-Shorouk Academy

Prof. Fathi E. Abd El-Samie

Vice Dean for Education and Affairs, Faculty of Electronic Engineering, Minoufiya University

"Efficient Multiple Access Technique for Future Generation Wireless Systems"

Name: Mohamed Abdelhamed Abdelrahman

Degree: Doctor of Philosophy in Communications Engineering

Judgment Committee

Name and Affiliation	Signature
Prof. Ahmed E. El-Mahdy Dean of the Faculty of Information Engineering and Technology - German University – Cairo.	
Prof. Wagdy Refat Anis Electronics and Communications Engineering Dept. Faculty of Engineering - Ain Shams University.	
Prof. Abdelhalim Abdelnaby Zekry Electronics and Communications Engineering Dept. Faculty of Engineering - Ain Shams University.	

Date: / /

Statement

This dissertation is submitted as a partial fulfillment of the degree of Doctor of Philosophy in Electrical Engineering (Electronics and Communications Engineering), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Name	: Mohamed Abdelhamed Abdelrahman
Signature	:
Date	: / /

Curriculum Vitae

Name of the researcher:	Mohamed Abdelhamed Abdelrahman		
Date of Birth:	16 - 7 - 1985		
Place of Birth:	Benha, Alqalubiya		
Nationality:	Egyptian		
Education:	B.Sc. in Electronics and Communication Engineering, Higher Institute of Engineering at Elshorouk, EL Shorouk Academy-2007		
	M.Sc. in Electrical Engineering, Electronics and Communications Engineering Dept. Minoufiya University, 2013		
Experience:	Instructor at Communication and Computer Engineering Dept., Higher Institute of Engineering, EL Shorouk Academy from 2007 until 2013		
	Teaching Assistant at Communication and Computer Engineering Dept., Higher Institute of Engineering, EL Shorouk Academy from 2013 until 2018		
Signature:			

Date ... /... /...

" يرفع الله الذين امنوا منكم والذين أوتوا العلم درجات والله بما تعملون خبير "

صدق الله العظيم

الآية (١١) سورة المجادلة

Acknowledgements

First and foremost, I would like to thank **ALLAH**, the Almighty for the great help during my whole life.

In memorial of *Professor Adel El-Henawy*, may ALLAH have mercy with him, I would like to thank him for his continuous encouragement and support during the period he worked with me before his death.

I would like to express my honest thanks and appreciation to my supervisors: *Professor Abdelhalim Zekry, Professor Salah Elagooz* and *Professor Fathi Abdelsamie* for their valuable guidance, support and suggestions. Their encouragement helped me overcome the difficulties I have encountered throughout my research. It has been a pleasure working under their supervision and will be a valuable memory in my life.

I would also like to thank my family for their constant love and support. I would not be the person I am without their influence and back up. My true love goes to my *father and mother*.

I am also especially grateful to *my wife* and my daughters *Rolan* and *Rovan* for their kindness, support, and encouragement, which provided the necessary enthusiasm to accomplish this thesis. This thesis is a dedication for their love.

List of Publications

- 1. **M. A. Abd El-Hamed**, Abdelhalim Zekry, Salah S. Elagooz and Fathi E. Abd El-Samie "Blind Selective Mapping for Single-Carrier Frequency Division Multiple Access System" Digital Signal Processing, 75 (2018) 25–37, 2018, Elsevier. (**IF=2.33**).
- M. A. Abd El-Hamed, Abdelhalim Zekry, Salah S. Elagooz, and Fathi E. Abd El-Samie, "Impact of Power Amplifier non-linearity on Blind Selective Mapping for SC-FDMA System" Japan-Africa Conference on Electronics, Communications and Computers (JAC-ECC 2017), Hilton Alexandria Green Plaza, Alexandria, Egypt 18-20 Dec. 2017.
- 3. **M. A. Abd El-Hamed**, Abdelhalim Zekry, Salah S. Elagooz and Fathi E. Abd El-Samie "All Pass Filter Approach for Single-Carrier Frequency Division Multiple Access System" International Journal of Communication Systems, Wiley. (**Revision**).

Abstract

Next generation of wireless mobile communication system will allow the provision of advanced multimedia services with ubiquitous access thanks to the higher data rates offered. However, it is necessary for the transmission technologies to be able to cope with problems deriving from high data rate transmission over wireless channels.

Hitherto, Orthogonal Frequency Division Multiplexing has been the most widely used multiplexing technique due to its robustness against frequency selective fading channels that highly encounter in mobile transmission. However, it suffers from High Peak-to-Average Power Ratio which may be particularly troublesome in uplink transmission because of the costly high power amplifiers that are needed in the user terminals.

Single Carrier-Frequency Division Multiple Access has become an alternative technique to the Orthogonal Frequency Division Multiple Access due to its low Peak-to-Average Power Ratio. It was chosen as the uplink multiple access scheme in the 3rd Generation Partnership Project Long Term Evolution. However, Single Carrier-Frequency Division Multiple Access still suffer from high Peak-to-Average Power Ratio in the uplink transmission which results in reducing power efficiency of the system. As a result there is a need to reduce the Peak-to-Average Power Ratio of the Single Carrier-Frequency Division Multiple Access system.

In this thesis many theoretical foundations of Single Carrier-Frequency Division Multiple Access have been introduced. The performance of the Single *ABSTRACT* ix

Carrier-Frequency Division Multiple Access system has been studied and enhanced by applying two proposed techniques for reducing the Peak-to-Average Power Ratio namely Blind-Selective Mapping and All Pass Filters schemes. Different factors and parameters are taken into consideration and many comparisons have been made to clarify the obtained results. Results show that the proposed Blind-Selective Mapping Single Carrier-Frequency Division Multiple Access scheme provides better performance compared with the traditional Single Carrier-Frequency Division Multiple access scheme. Also, in comparing the performances of the two proposed Peak-to-Average Power Ratio reduction schemes, results shows that the All Pass Filters Single Carrier-Frequency Division Multiple Access provides better performance in terms of the Peak-to-Average Power Ratio. Many other results are given in the thesis.

Table of Contents

Acknowledgements	vi
List of Publications	vii
Abstract	viii
Table of Contents	X
List of Abbreviations	xiv
List of Figures	xix
List of Tables	xxvi
List of Symbols	xxvi
Chapter 1 Introduction	1
1.1 Thesis Motivation	5
1.2 Thesis Organization	7
Chapter 2 Single and Multi-Carriers in Mobile Communication Sy	stems 9
2.1 Introduction	9
2.2 Evolution of Cellular Wireless Communication Systems	10
2.2.1 First Generation	10
2.2.2 Second Generation.	11
2.2.3 Third Generation	11
2.2.4 Fourth Generation	12
2.2.5 Fifth Generation	13
2.3 Mobile Radio Channels	18
2.3.1 Slow and Fast Fading	19
2.3.2 Frequency Selective and Frequency Flat Fading	19
2.3.3 Channel Equalization	20
2.4 Multi-Carriers Communication Systems	21

2.4.1 OFDM System	22
2.4.2 OFDMA System	25
2.5 Single-Carrier Communication Systems	26
2.5.1 SC-FDE System	26
2.5.2 SC-FDMA System	29
Chapter 3 Single Carrier-Frequency Division Multiple Access System	31
3.1 Introduction	31
3.2 Subcarriers Mapping Methods	32
3.3 SC-FDMA System Model	34
3.4 Time Domain Symbols of the SC-FDMA System	38
3.4.1 Time Domain Symbols of the SC-IFDMA System	39
3.4.2 Time Domain Symbols of the SC-LFDMA System	39
3.5 Comparison between the OFDMA System and the SC-FDMA	
System	41
3.6 Power Amplifiers in SC-FDMA System	42
3.6.1 Peak Power Problem	44
3.6.1.1 Sensitivity to Nonlinear Amplification	44
3.6.1.2 Sensitivity to A/D and D/A Resolution	45
3.6.1.3 Peak-to-Average Power Ratio	45
3.7 Pulse-Shaping in SC-FDMA System	47
3.8 MIMO-SC-FDMA System Models	48
3.8.1 SM-SC-FDMA System Model	50
3.8.2 SFBC-SC-FDMA System Model	52
3.9 MIMO Equalization Schemes in SC-FDMA System	54
3.9.1 The MIMO ZF Equalization Scheme	55
3.9.2 The MIMO MMSE Equalization Scheme	55

Chapter 4 PAPR Re	duction Te	echniques in Single and Multi-Carriers	
FDMA			56
4.1 Introduction	on		56
4.2 PAPR Rec	luction Tec	hniques	57
4.2.1	Signal Di	stortion PAPR Reduction Techniques	59
	4.2.1.1	Clipping and Filtering	60
	4.2.1.2	Companding Transform	61
	4.2.1.3	Peak Cancellation	66
4.2.2	Signal Di	stortion less PAPR Reduction Techniques	66
	4.2.2.1	Interleaved OFDM	66
	4.2.2.2	Tone Injection	68
	4.2.2.3	Tone Reservation	70
	4.2.2.4	Active Constellation Extension	72
	4.2.2.5	Coding Techniques	74
	4.2.2.6	Partial Transmit Sequence	74
	4.2.2.7	Conventional Selective Mapping	76
	4.2.2.8	All Pass Filters	77
Chapter 5 Proposed	Blind Sel	ective Mapping PAPR Reduction Scheme	:
in SC-FD	MA Systen	n	80
5.1 Introduction	on		80
5.2 Time Dom	nain Conve	ntional Selective Mapping	82
5.3 Proposed S	SISO-SC-F	DMA Transceiver Model	84
5.3.1	Proposed B	Blind Selective Mapping Transmitter	84
5.3.2	Constructio	on of the b_n^u Vectors	86
5.3.3	Proposed B	Blind Selective Mapping Receiver	88
5.4 Computat	ional Com	plexity	91
5.5 Proposed	MIMO-SC	S-FDMA Transceiver Model	94

5.6 Solid State Power Amplifier	97
5.7 Simulation Results	98
Chapter 6 Proposed All Pass Filter PAPR Reduction Scheme in SC-F	DMA
System	128
6.1 Introduction	128
6.2 Proposed SISO-SC-FDMA Transceiver Model	129
6.2.1 Proposed All Pass Filters Transmitter	130
6.2.2 All Pass Filters Design	132
6.2.3 Proposed All Pass Filters Receiver	134
6.3 Computational Complexity	136
6.4 Simulation Results	140
Chapter 7 Conclusions and Future Work	148
7.1 Conclusions	148
7.2 Future Work	150
References	151
Annendix A Channel model	165

List of Abbreviations

1G First Generation

2G Second Generation

3G Third Generation

3D Three Dimensional

3GPP Third Generation Partnership Project

4G Fourth Generation

5G Fifth Generation

A/D Analog-to-Digital

ACE Active Constellation Extension

AMPS Advance Mobile Phone Service

AM/AM Amplitude/Amplitude

AM/PM Amplitude/Phase

APFs ALL Pass Filters

APFs-SC-FDMA SC-FDMA system based on APFs

ASE Active Set Extension

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BS Base Station

B-SLM Blind Selective Mapping

B-SLM-SC-FDMA Blind Selective Mapping scheme for SC-FDMA

B-SLM-SC-IFDMA SC-IFDMA based on B-SLM

B-SLM-SC-LFDMA SC-LFDMA based on B-SLM

CCDF Complementary Cumulative Distribution Function

CCRR Computational Complexity Reduction Ratio

CDMA Code Division Multiple Access

CFOs Carrier Frequency Offsets

CL Clipping Level
CP Cyclic Prefix

CR Clipping Ratio

C-SLM Conventional Selected Mapping

C-SLM-SC-LFDMA SC-LFDMA based on C-SLM

D/A Digital-to-Analog

DFDMA Distributed Frequency Division Multiple Access

DVB Digital Video Broadcasting

dB Decibel

FDE Frequency Domain Equalization

EDGE Enhanced Data Rates for GSM Evolution

FFT Fast Fourier Transform

FBMC Filter Bank Multicarrier

FDMA Frequency Division Multiple Access

GA Genetic Algorithm

GFDM Generalized Frequency Division Multiplexing

GPRS General Packet Radio Service

GSM Global System for Mobile

HD High Definition

HPA High Power Amplifier

HSPA High Speed Packet Access

IP Internet Protocol

I/Q In-phase/Quadrature-phase

IAI Inter-Antenna Interference

IBI Inter-Block Interference

IBO Input Back-Off