سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

MINERALOGY AND GEOCHEMISTRY OF SOME PLACER MINERALS IN THE STREAM SEDIMENTS OF DAHAB AREA, SINAI, EGYPT.

By

Hala Mohamed Korany Mansour

In Partial Fulfillment of Requirements for the Degree of Master in Science (Geology)

Cairo 2003

/CCV4

Approval Sheet

Title of the M. Sc. Thesis:

MINERALOGY AND GEOCHEMISTRY OF SOME PLACER MINERALS IN THE STREAM SEDIMENTS OF DAHAB AREA, SINAI, EGYPT

Name of the candidate:

HALA MOHAMED KORANY MANSOUR

Submitted to
The Department of Geology- Faculty of Science- Cairo University.

Supervision Committee:

Prof. Ahmed A. El-Kammar — N \

Professor of Geochemistry, Department of Geology, Faulty of Science, Cairo University.

Dr. Adel A. Surour

Associate Professor of Mineralogy, Department of Geology, Faculty of Science, Cairo University.

Dr. Ebtisam H. Arafa

Head of the Geological Museum, Department of Geology, Faculty of Science, Cairo University.

Note

Beside the research work materialized in this thesis, the candidate has attended courses for one year in the following topics:

- 1. Igneous petrology
- 2. Metamorphic petrology
- 3. Ore mineralogy
- 4. Ore deposits
- 5. Rock-forming minerals
- 6. Geochemistry
- 7. X-ray and other techniques
- 8. Isotope geology
- 9. Clay minerals
- 10. Statistics
- 11. German language

She has successfully passed the final examinations of these courses in October 1998.

Prof. Ahmed A. El-Kammar

Head of the Department of Geology

Julin-

Cairo University

ACKNOWLEDGEMENTS

I would like to express my deep thanks to Prof. A. Sadek and Prof. M. A. Takla, the former Heads of the Department of Geology, Faculty of Science, Cairo University for the facilities offered during the progress of this work.

Deep thanks are due to my supervisors, Prof. A. A. El-Kammer, Dr. Adel A. Surour and Dr. Ebtisam H. Arafa for suggesting the point of research, their continuous support and planning of the whole work. Their kind assistance during the field and laboratory works is greatly appreciated.

Thanks are due to all members of the Department of Geology, Cairo University, especially my colleague at the museum Miss Fatma El-Zahara Saad, Mrs. Somaya Zeid at the Computer Laboratory and Mr. Ahmed Abdel Halim instructor at the department. Sincere thanks to Prof. El-Sayed A. Yousef for providing the facilities of the Computer Laboratory. The candidate appreciates the sincere help of the Geologist Abdel Moneim Hussein from the Geological Survey of Egypt for the facilities of fire assay for gold in the some of the studied sediments.

At last but not least, my deep grateful thanks to my parents, my sister and my brothers. The continuous support, deep sincere encouragement and patience of my husband, Adel Roshdy is greatly appreciated.

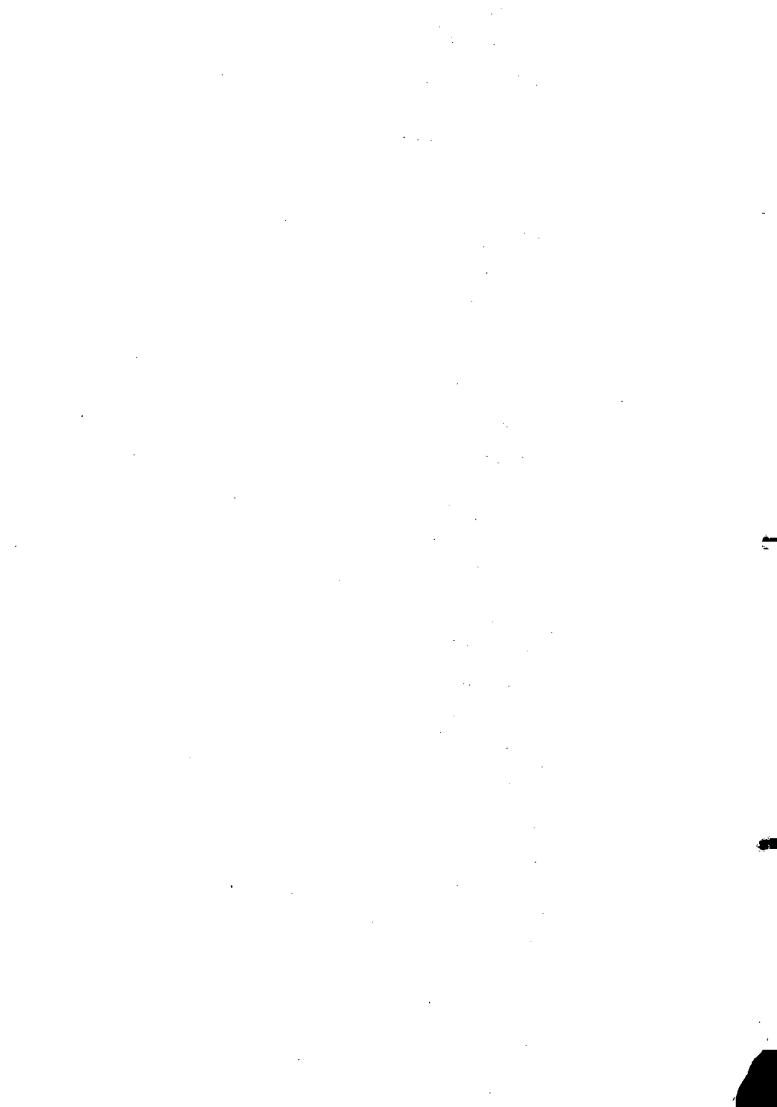
ABSTRACT

The stream sediments of Dahab area, southeastern Sinai, Egypt were studied for their content of economic minerals. These sediments are immature as indicated by poor sorting and other mechanical parameters. They are derived from the Precambrian basement rocks, which are mostly represented by granitic rocks in addition to lesser amounts of volcanics and gabbros. The mineralogical investigation revealed that these sediments contain considerable amounts of placer gold, Fe-Ti oxides and zircon.

The concentrated Fe-Ti oxides comprise homogeneous magnetite and ilmenite in addition to ilmeno-magnetite, hemo-ilmenite and rutile-hematite intergrowths. Isodynamic separation of some raw samples (size ≤1mm) revealed that up to 15.12% magnetic minerals can be recovered. Zircon shows remarkable variations in morphology, colour, chemistry and provenance. U-poor and U-rich varieties of zircon were discriminated containing UO₂ in the ranges of 0.04-1.19 wt% and 3.05-3.68 wt%, respectively. REE-bearing minerals comprise monazite, allanite and Lacerianite.

On mineralogical basis, the present work suggests that Dahab stream sediments represent a promising target for further geochemical exploration for precious metals, especially gold. Fire assay data indicate that placer gold in some of the studied sediments sometimes reaches 15.34 g/t. It is supposed that the narrow gullies and valleys cutting the basement manifested the development and preservation of gold in this arid environment. Background concentration of gold and variation in lithology suggest multiple source of the metal in the investigated sediments.

.


C

CONTENTS

CHAPTER ONE: INTRODUCTION	
1.1. Location and accessibility	1
1.2. Geology of southeastern Sinai	3
1.2.1. The Precambrian rocks	3
1.2.2. The Phanerozoic cover	7
1.2.2.1. Pre-Quaternary formations	7
1.2.2.2. Quaternary to recent sedimentary succession	9
1.3. Review on the heavy minerals in Egypt	11
1.4. Aim and scope of study	14
1.5. Methodology	14
CHAPTER TWO: MECHANICAL ANALYSIS	
AND NON-OPAQUE MINERALS	
2.1. Grain size analysis	
2.1.1. Graphic mean size (M _Z)	20
2.1.2. Inclusive graphic standard deviation (σ _i)	20
2.1.3. Inclusive graphic skeweness (Sk _i)	22
2.1.4. Inclusive graphic kurtosis (K _G)	23
2.1.5. Correlation between the mean size (MZ)	24
and the inclusive graphic standard deviation (σi)	
2.2. Graphic presentation of the mechanical analysis data	2.4
2.3 Hoars liquids and isodynamic congretion	24
2.3. Heavy liquids and isodynamic separation	
2.4. Light fraction	29

. . . • . • . . · • .

	2.6.1. Biotite	40
	2.6.2. Titanite	42
	2.6.3. Apatite	42
	2.6.4. Hornblende	44
	2.6.5. Epidotes	45
ä	2.6.6. Zircon	46
	2.6.7. Monazite	49
	2.6.8. Pyroxene	49
	2.6.9. Rutile	51
	2.6.10. Chlorite	51
	2.6.11. Tourmaline	51
2.7.	Typology and composition of zircon	52
2.8. 1	REE and radioactive minerals	. 58
3.1.1	Frequency distribution of magnetite	65
3.1.1	Frequency distribution of magnetite	65
	1.1. Homogeneous magnetite	
	1.2. Exsolved magnetite	
•	3.1.2.1. Banded intergrowth	69
	3.1.2.2. Trellis intergrowth	69
	3.1.2.3. Sandwich intergrowth	
	3.1.2.4. Composite intergrowth	70
	3.1.2.5. Internal and external granule	70
3.7	1.3. Altered magnetite	71
	3.1.3.1. Replacement by titanite	71
	3.1.3.2. Rutile-hematite intergrowth	71
3.2. I	Frequency distribution of ilmenite	71
3.2	2.1. Homogeneous ilmenite	72.
3.1	3.1.3.1. Replacement by titanite 3.1.3.2. Rutile-hematite intergrowth Frequency distribution of ilmenite	71 71 71

