

THE USE OF SOME AGRICULTURAL WASTE IN THE PREPARATION OF INSULATING FIRE BRICKS

By **Ali Mohamed Ali Hassan**

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

Chemical Engineering

THE USE OF SOME AGRICULTURAL WASTE IN THE PREPARATION OF INSULATING FIRE BRICKS

By

Ali Mohamed Ali Hassan

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

Chemical Engineering

Under the Supervision of

Prof. Dr. Magdi Fouad Abadir	Associ. Prof Dr. Hossam ElDesouky Moselhy
	••••••
Professor of Inorganic Industries	Associate Professor of Inorganic Industries
Chemical Engineering Department	Chemical Engineering Department
Faculty of Engineering, Cairo University	Higher Institute of Engineering,
	El-shorouk City ,Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

THE USE OF SOME AGRICULTURAL WASTE IN THE PREPARATION OF INSULATING FIRE BRICKS

By

Ali Mohamed Ali Hassan

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Magdi F. Abadir (Thesis Main Advisor)

Faculty of Engineering, Cairo University

Prof. Dr. Osama Abd El Bary Ibrahim (Internal Examiner)

Faculty of Engineering, Cairo University

Prof. Dr. Amany A. Mostafa (External Examiner)

Professor of Material Science

Head of Inorganic Chemical Industries, National research Centre (NRC)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Ali Mohamed Ali Hassan

Date of Birth: 7/13/1983 **Nationality:** Egyptian

E-mail: Eldeeb1983dedo@gmail.com

Phone: 01001639996

Address: 10th of Ramadan/Sharkia/Egypt

Registration Date: 1 / 10 /2013

Awarding Date:/2018

Degree: Doctor of Philosophy

Department: Chemical Engineering Department

Supervisors:

Prof. Dr. Magdi Fouad Abadir

Associ. Prof. Dr. Hossam ElDesouky Moselhy

Examiners:

Prof. Dr. Amany A. Mostafa (External examiner)Prof. Dr. Osama Abd El Bary Ibrahim (Internal examiner)Prof. Dr. Magdi F. Abadir (Thesis main advisor)

Title of Thesis:

THE USE OF SOME AGRICULTURAL WASTE IN THE PREPARATION OF INSULATING FIRE BRICKS

Key Words:

Agricultural waste, Bagasse, Wheat straw, Polystyrene, Refractories

Summary:

Insulating fire bricks were prepared by the addition of one of two types of agricultural wastes, namely bagasse, the fibrous residue from sugar cane processing and wheat straw residue. These wastes were first sun dried, shredded then mixed with polystyrene (PS) beads as pore forming agent to be finally added to local Egyptian clay (kaolin). Shaped cubic samples of bricks ($60\times60\times60$ mm³) were thus prepared, dried overnight then fired. Brick samples were heated to temperatures which varied between 900 and 1250°C for 6 h, with a heating rate of 2.5°C/min until 650°C, and then at 5°C/min until 900°C, 1000°C and 1250°C. The effect of varying PS and bagasse or PS and wheat straw content on the fired bricks was investigated.

Acknowledgments

I am grateful to Allah by the grace of whom this work was accomplished. I would like to express my sincerest appreciation to *Prof. Madgi Abadir* for suggesting this point of research and supervising this work. The continuous encouragement of *Assoc. Prof. Dr. Hossam ElDesouky* (In all stages of the work) is also most appreciated. Finally, none of this work would have been accomplished without the support and patience of my parents and my wife to whom I love very much.

Dedication

TO MY PARENTS AND MY LOVED WIFE AND SONS

Table of Contents

Acknowledgmen	ts
Dedication	
Table of contents	s
List of tables	
List of figures	
Nomenclature	
Abstract	
Chapter 1 Int	troduction
	ckground
	m, objectives and scope
	otivation and assumption of the present research
	gnificance of the Research
1.5 Lay	yout of thesis
Chapter 2 Lit	terature Review
2.1 Int	roduction
	fractory materials
	sic Classification.
	w materials
(a)	Structure of kaolinite
(b)	Plasticity of clay – water mixtures
(c)	Effect of heat on clays
(d)	Clay ores
(e)	Impurities present in clay ores
	assification of acidic refractories
	sulating Refractories
	anufacture of insulating fireclay refractory bricks
	• •
2.3.2 Pro	oblems associated with the use of insulating refractories
	ysical and mechanical properties of insulating firebricks Bulk density
(b)	Cold Crushing Strength (CCS) Permanent Linear Change on Reheating
	Thermal conductivity

2.4	Pores generation in insulating firebricks
2.4.1	Conventional materials
2.4.2	The use of various vegetable wastes as pore generators
2.4.3	Uses of wheat straw
2.4.4	Uses of bagasse
	(a) Fireboards from bagasse(b) Pulp and paper from bagasse(c) The use of bagasse in the building industryc-1 Use in the manufacture of unfired (adobe) bricks
	c-2 Use in the manufacture of fired building bricks
	c-3 Use in the manufacture of lime and cement based building bricks
	c-4 Use in the manufacture of insulating refractory bricks.
Chapter 3	Materials and Experimental Methods
3.1	Introduction
3.2	Raw Materials
3.2.1	Bagasse
3.2.2	Wheat straw
3.2.3	Water
3.2.4	Polystyrene
3.2.5	Kaolin
3.3	Characterization of Kaolin powder
3.3.1	Chemical analysis (XRF)
3.3.2	X – Ray diffraction (XRD) mineralogical analysis
3.3.3	Particle Size distribution (PSD)
3.3.4	Determination of ash content for vegetable waste
3.3.5	Preparation of grog
3.4	Preparation of insulating refractory bricksspecimens
3.4.1	Purpose
3.4.2	Materials
3.4.3	Apparatus used
3.4.4	Mixing procedure
3.4.5	Drying and firing
3.5	Properties of fired insulating fire bricks.

3.5.1	Apparent porosity, water absorption and bulk density
3.5.2	Cold crushing strength
3.5.3	Linear shrinkage
	A. Drying shrinkage
3.6	B. Firing shrinkage Determination of thermal conductivity for fired clay
3.0	bricks
3.6.1	Construction of a simple apparatus for the measurement of
	thermal conductivity by the comparative method
Chapter 4	Results and Discussion
Part One	Insulating bricks prepared with wheat straw
4.1	Introduction
4.2	Characteristics of raw materials
4.2.1	Chemical composition of clay
4.2.2	Mineralogical composition of clay
4.2.3	Particle size distribution of clay
4.2.4	Powder density of clay
4.2.5	Thermogravimetric analysis of kaolin
4.2.6	Properties of grog
4.2.7	Properties of wheat straw
4.2.8	Properties of bagasse
4.2.9	Properties of polystyrene (PS)
4.3	Sintering characteristics of fired bricks containing wheat straw
4.3.1	Water absorption
4.3.2	Porosity
4.3.3	Bulk density
4.4	Cold crushing strength (CCS) of WS based bricks
4.5	Thermal conductivity of WS based bricks
4.5.1	Thermal conductivity at 400°C
4.5.2	Thermal conductivity at 600°C
4.5.3	Thermal conductivity at 800°C
4.5.4	Relative effect of percent additions and temperature

4.5.5	Relation between thermal conductivity and porosity
Part Two 4.6	Insulating bricks prepared with bagasse
4.6.1	Thermal behavior of a bagasse containing brick
4.6.2	Water absorption
4.6.3	Porosity
4.6.4	Bulk density
4.7	Cold crushing strength (CCS) of Bagasse based bricks
4.8	Thermal conductivity of Bagasse based bricks
4.8.1	Thermal conductivity at 400°C
4.8.2	Thermal conductivity at 600°C
4.8.3	Thermal conductivity at 800°C
4.8.4	Dependence of thermal conductivity on composition and temperature
4.9	Concluding remarks and simple economic assessment
Chapter 5	Conclusion and Recommendation
5.1	Conclusion
References	
Appendix A	[ASTM D-422]
Appendix B	[ASTM C-20]
Appendix C	[ASTM C-133]
Appendix D	[ASTM D 4404-84]
Appendix E	[ASTM E 1131-08]

List of Tables

		Page
Table 2.1	Types of alumino – silicate refractories	10
Table 2.2	Classification of firebrick insulating refractories (ASTM C155 – 97)	15
Table 3.1	Chemical composition of sugarcane bagasse waste	26
Table 3.2	Chemical composition of wheat straw waste	27
Table 3.3	Recommended chemical limitations for water to be mixed with clay	28
Table 3.4	Sample compositions	32
Table 3.5	Refractories standard properties-C 30	34
Table 4.1	Chemical Analysis of clay used	39
Table 4.2	Correlation table of WA for WS based bricks	43
Table 4.3	Correlation table for porosity for WS based bricks	44
Table 4.4	Correlation table for bulk density of WS based bricks	46
Table 4.5	Correlation table for CCS of WS based bricks	48
Table 4.6	Correlation table for thermal conductivity with both additions and temperature	52
Table 4.7	Correlation table for WA of Bagasse based bricks	55
Table 4.8	Correlation table for porosity of Bagasse based bricks	56
Table 4.9	Correlation table for bulk density of Bagasse based bricks	58

Table 4.10	Correlation table for CCS of WS based bricks	60
Table 4.11	Correlation table for CCS of WS based bricks	63
Table 4.12	Comparison of prepared bricks with C – 30 Standards	64
Table 4.13	Comparison of prepared bricks (0.5% PS) with C – 32 Standards	66
Table 5.1	Properties of chosen composition of insulating refractory brick	68

List of Figures

		Page
Figure 2.1	Refractory layers of an induction furnace	5
Figure 2.2	Structure of kaolinite	6
Figure 2.3	Production of insulating refractories [Abadir]	13
Figure 2.4	Manufacturing steps of clay bricks	18
Figure 2.5	Steps of extraction of sugar from canes	20
Figure 2.6	"Depithing" Bagasse	21
Figure 2.7	Production of pulp from vegetable and garment waste	21
Figure 3.1	Cutting machine used for size reduction of wastes	27
Figure 3.2	Bagasse sample before and after shredding	27
Figure 3.3	Polystyrene beads	28
Figure 3.4	Set of vertically arranged screens	30
Figure 3.5	MTS apparatus for compressive strength test	35
Figure 3.6	Apparatus used for the determination of thermal conductivity	38
Figure 4.1	XRD pattern of clay	40
Figure 4.2	Particle size distribution of clay and grog	41

Figure 4.3	TGA of kaolin
Figure 4.4	Effect of percent PS and WS addition to percent water absorption.
Figure 4.5	Effect of percent PS and WS addition to percent porosity
Figure 4.6	Relation between reciprocals of Porosity and WA for WS based bricks.
Figure 4.7	Effect of percent PS and WS addition to bulk density
Figure 4.8	Comparison between experimental and calculated values of bulk densities.
Figure 4.9	Effect of percent PS and WS addition with respect to cold crushing strength
Figure 4.10	Semi-logarithmic variation of CCS with porosity
Figure 4.11	Effect of percent PS and WS addition on thermal conductivity at 400°C.
Figure 4.12	Effect of percent WS addition on thermal conductivity at 400°C.
Figure 4.13	Effect of percent PS addition on thermal conductivity at 600°C
Figure 4.14	Effect of percent WS addition on thermal conductivity at 600°C.
Figure 4.15	Effect of percent PS addition on thermal conductivity at 800°C
Figure 4.16	Effect of percent WS addition on thermal conductivity at 800°C.

Figure 4.17	porosity of WS based bricks
Figure 4.18	Thermogravimetric analysis of a brick containing 1% PS and 3% bagasse
Figure 4.19	Effect of percent PS and Bagasse addition to percent water absorption
Figure 4.20	Effect of percent PS and Bagasse addition to percent porosity
Figure 4.21	Relation between reciprocals of Porosity and WA for Bagasse based bricks
Figure 4.22	Pore size distribution in fired bricks
Figure 4.23	Effect of percent PS and Bagasse addition to bulk density
Figure4.24	Effect of percent PS and WS addition to cold crushing strength
Figure 4.25	Effect of percent PS and Bagasse addition on thermal conductivity at 400°C.
Figure 4.26	Relation between thermal conductivity (400°C) and porosity of Bagasse based bricks
Figure4.27	Effect of percent PS and Bagasse addition on thermal conductivity at 600°C.
Figure 4.28	Effect of percent PS and Bagasse addition on thermal conductivity at 800°C
Figure 4.29	Effect of percent bagasse addition on thermal conductivity at 600°C