

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPARTMENT

Integrated Resource Planning in the Egyptian Electricity System

Submitted by:

Khaled Mohamed Shehata Abdel Gawad

A thesis submitted to the faculty of Engineering at Ain-Shams University in Partial Fulfilment of the requirements for the Degree of Master of Science

In

Electrical Power and Machines Engineering Under supervision of

Dr. Walid El-Khattam

Associate Professor

Department of Electrical Power
and Machines
Faculty of Engineering
Ain-Shams University

Prof. Hafez A. El- Salmawy

Professor of Energy Engineering
Department of Mechanical Power
Engineering
Faculty of Engineering
Zagazig University

Cairo, Egypt April 2018

Curriculum Vitae

Engineer's Name: Khaled Mohamed Shehata Abdel Gawad

Date of Birth: 25/11/1987

Nationality: Egyptian

Current Job: Advisor

Employer: German Agency for International

Cooperation (GIZ)

Degree: Master of Science (M.Sc.)

Registration Date: June 2012

Address: 5 Hosny Ashmawy St, Heliopolis

E-mail: Shehata_khaled@hotmail.com

Mob: +2 0100 267 6162

Statement

This thesis is submitted to Faculty of Engineering, Ain Shams

University in partial fulfilment of the requirement for the degree of Master of

Science in Electrical Power and Machines Engineering.

The work included in this thesis was carried out by the author, at the

Electrical Power and Machines Department, Faculty of Engineering, Ain

Shams University.

No Part of this thesis has been submitted for a degree or qualification

at any other universities.

Signature

Khaled Mohamed Shehata Abdel Gawad

Date: 4/4/2018

Board of Supervisors

The undersigned certify that they have read and recommended to the Faculty of Engineering, Ain Shams University for acceptance a thesis entitled "Integrated Resource Planning in the Egyptian Electricity System" submitted by Khaled Mohamed Shehata Abdel Gawad in partial Fulfilment of the Requirements for the degree of Master of Science in Electrical Engineering

Signature

1. Prof. Hafez A. El-Salmawy

Professor of Energy Engineering Department of Mechanical Power Engineering Faculty of Engineering, Zagazig University

2. Dr. Walid Aly Seif El-Islam El-Khattam

Associate Professor, Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Date: 4/4/2018

Examiners Committee

The undersigned certify that they have read and recommended to the Faculty of Engineering, Ain Shams University, for acceptance a thesis entitled "Integrated Resource Planning in the Egyptian Electricity System" submitted by Khaled Mohamed Shehata Abdel Gawad, in partial Fulfilment for the Requirements of degree of Master of Science in Electrical Engineering

<u>Signature</u>

1. Prof. Mohab Awad Mokhtar Halouda

Professor of Electrical Power Engineering Faculty of Engineering, Cairo University

2. Prof. Hesham Kamel Abdel Latif Temraz

Professor of Electrical Power Engineering Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

3. Prof. Hafez A. El Salmawy

Professor of Mechanical Power Engineering Department of Mechanical Power Engineering, Faculty of Engineering, Zagazig University

4. Dr. Walid Aly Seif El-Islam El-Khattam

Associate Professor of Electrical Power Engineering Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Date: 4/4/2018

Acknowledgement

The effort in putting together this research work has been shared by many people. Foremost, I am grateful of Allah for blessing me with intellect and knowledge to pursue this research work. I would like to thank Ain Shams University for providing me with the platform for undertaking this research work and providing me with the latest facilities to assist me in my research work.

I sincerely thank my advisors **Prof. Hafez A. El Salmawy** and **Dr. Walid El-Khattam** for giving me the opportunity to pursue my research under their guidance. It has been a great learning experience working with them. I would also like to express my deepest gratitude towards them for offering instructive advice at all times, treating me with endurance, being patient and constantly pushing me to do better every time.

I sincerely would like to thank one of my best colleagues that I had the chance to work with in a governmental project, **Rocco De Miglio**, for helping me with the technical issues in the mathematical model as well as sharing his review which guided me through the thesis.

I sincerely thank my Wife, **Alaa Ibrahim**, for her continuous support, help, patience and understanding. She constantly kept pushing me to do my best throughout of this long journey in the Master's degree level.

Last, but not the least, I thank my family and friends who have been a constant source of encouragement and support for me throughout till I have earned my Master of Science degree.

Abstract

In this thesis, swarm based optimization techniques are utilized to develop an accurate and computationally efficient mathematical model using MatLab programming tool to solve the IRP planning for a power system. These include two swarm intelligence techniques; Particle Swarm Optimization (PSO) and Fire Fly Optimization (FFO). The developed IRP model is verified against published results for the future plans of the Indian electricity system.

The developed IRP optimization mathematical model is used to investigate IRP planning of the Egyptian power system. Since there are committed plans of the power system in Egypt till 2019/2020, the study base year is taken to be 2019/2020. The IRP planning tool is applied to explore the development of the system over the next 20 years up to 2039/2040.

Two base cases regarding the objective functions are considered. These are; the minimum total cost per MWh of electrical energy demand and minimum average heat rate (fossil fuel consumption) of electrical energy demand. Other system constraints are considered. Furthermore, technical, financial and cost databases considering the most reliable data have developed to be utilized as input to the model. Also, a variant for the minimum cost scenario is to consider using FFO as an optimization technique instead of PSO, which has been used as a base technique in this thesis. Parametric study has been carried out for the impact of some important parameters on the model results. Finally, an IRP analysis is carried out for the impact of DSM and CO₂ costing as well as both.

The impact of IRP planning on the existing pool has been analyzed. Furthermore, the structure of the generation pool at different milestone years as well as by the end of the planning horizon in 2039/2040, has been assessed and analyzed. This analysis took into consideration seven indicators. These include; Share of non carbon based energy generation, Share of installed capacities of different renewable energy technologies, Average heat rate, Average specific CO₂ emissions, Levelized energy cost per MWh, Herfindahl-Hirschmann Index for supply diversification and the Total investments needs over the planning period.

Based on the output results it has been found that regardless the scenario, a total capacity of 13.2 GW should be phased-out permanently of the existing power pool, as they will not be needed along the planning period of 20 years. These may be due to their low efficiency or unsuitable capacity. This means that an asset management program is needed to optimize the utilization of these assets. This program should include technical and commercial dimensions.

Also it has been found that, the share of the renewable energy for all scenarios will be around 34%-43% depending on the scenario. The higher limit is for minimum heat rate, while the lower limit is for the minimum cost using FFO scheme. This ratio will increase as other non hydrocarbon sources, such as nuclear sources are considered. This necessitates having higher share of simple cycle gas turbine in the system to provide the necessary capacity credit to this share of intermittent renewable sources. Yet, the system is designed in a way that reliance on these simple cycle gas turbine units for energy generation is minimum. Moreover, all scenarios show minor reliance on coal as source of supply. Using IRP optimization algorithm shows a general tendency of all scenarios towards progressive improvement in HHI, meaning better diversification of the supply sources

Considering different planning scenarios, it has been found that, in case of minimum heat rate objective function, the highest share of renewable energy as well as non carbon based sources can be achieved. Also, it will ensure the highest diversification of energy supply sources, yet it will not achieve the lowest energy cost to consumers. Furthermore, higher GDP rate with minimum cost objective function has the second highest share of renewable energy as well as low average heat rate almost similar to that minimum heat rate scenario, which represent multiple benefits to the economy. However, the latter will lead to higher investments needs. Yet, this should not be looked as a burden, on the contrary this represents an investment opportunity.

It is important to mention that, in case if the system operator diverts from the planned mode targeting minimum reliance on the simple cycle gas turbines as source for energy supply, due to operational circumstances, this will have minor negative impact on the average heat rate, yet it will have positive impact on levelized energy prices and total investments needs, compared with the base scenario.

The lowest energy cost can be achieved when DSM is applied. Also, the lowest investment needs can be achieved when a combined scenario of DSM and CO₂ costing is applied.

This thesis provides an effective decision support tool, which can help decision makers to achieve better results for ensuring; security of supply, optimum utilization of resources, fair cost to consumers and minimum impact on the environment.

Contents

Chapter 1	Introduction	1
1.1	Introduction	1
1.2	Thesis Objectives	5
1.3	Thesis Structure	9
Chapter 2	Status and Application of Integrated Resource Planning	10
	_	
2.1	Introduction	10
2.2	Application of IRP	11
2.3	Application of DSM	13
2.4	Renewables Capacity Credit and IRP	15
2.5	Chronological Development of Power	
	Systems Programming	18
2.6	Classification of the Optimization Algorithms	21
2.6.1	Genetic Algorithms (GA) for Optimization	22
2.6.2	Ant-Colony System (ACS)	23
2.6.3	Particle Swarm Optimization (PSO)	26
2.6.4	Firefly Optimization (FFO)	30
2.7	Discussion of the Previous work and Scope of	
	the Present Work	33
Chapter 3	Model Mathematical Formulation	36
3.1	Introduction	36
3.2	Scope and Justification of the Optimization	
	Model	39
3.3	Mathematical Model Equations	47
3.4	Optimization Algorithms	52
3.4.1	PSO Algorithm Description	53
3.4.2	FFO Algorithm Description	54
3.5	Verification of the Chosen Optimization	
	Techniques	55

Chapter 4	Egyptian Power System	58
4.1	Introduction	58
4.2	Current Status and Recent Development in the	
	Power Sector in Egypt	59
4.3	The Egyptian Generation Mix	61
4.4	Renewables' Potential in Egypt	66
4.5	Capacity Credit of Renewables in Egypt	69
4.6	Development in Planning Practices	72
4.7	Alternative Scenarios Considered	73
Chapter 5	Results and Analysis	76
5.1	Introduction	76
5.2	Asset Management Analysis of the Generation	
	Pool before 2019/2020	77
5.3	Analysis of the Base Case Scenarios	81
5.4	Parametric Analysis	94
5.4.1	Effect of GDP Growth Rate	94
5.4.2	Impact of Higher Fuel Prices	104
5.4.3	Low Solar Investments	112
5.4.4	Operational Scheme to Balance Renewables	120
5.5	Integrated Resource Planning Scenarios	129
5.5.1	DSM Scenario	129
5.5.2	Environmental Scenario	140
5.5.3	DSM & Environmental Scenario	147
5.6	Summary	156
Chapter 6	Summary and Conclusions	158
References		165

Appendices	170
Appendix A: Annual LEC of Different Technologies	170
Appendix B: Generation Mix Power Plants – 2019/2020	180
Appendix C: Base Case (a) – PSO Scenario Results	186
Appendix D: Base Case (a) – FFO Scenario Results	187
Appendix E: Base Case (b) Scenario Results	188
Appendix F: Low GDP Scenario Results	189
Appendix G: High GDP Scenario Results	190
Appendix H: High Fuel Prices Scenario Results	191
Appendix I: Low Solar Investments Scenario Results	192
Appendix J: Balancing Renewables Scenario Results	193
Appendix K: DSM Scenario Results	194
Appendix L: Environmental Scenario Results	195
Appendix M: DSM & Environmental Scenario Results	196

List of Tables

Table 3.1	Base Case Mathematical Model Assumptions	42
Table 3.2	Base Case Annual Fuel Costs	46
Table 3.3	Capacities Addition and Capital Costs	56
Table 3.4	Case Study Results vs. PSO & FFO Results	57
Table 4.1	Conventional Generation Expansion Plan for 2017-2020	63
Table 4.2	Planned Projects for Wind Energy till 2025	68
Table 4.3	Planned Projects for Solar PV till 2022	69
Table 4.4	Base Case Scenarios' Description	73
Table 4.5	Different Sensitivity Parameters and other Scenarios	75
Table 5.1	Total Added Capacities (MW) – Year 2039/2040 – Base Case Scenarios	83
Table 5.2	Total Added Capacities (MW) – Year 2039/2040 – Base Case (a) – PSO and Low Solar Investments Scenarios	113

List of Figures

Fig. 1.1	IRP General Procedure	4
Fig. 1.2	Thesis Flowchart	8
Fig. 2.1	Graphical Representation of the ACS Optimization Technique in the form of a Multi-Levelled Network	25
Fig. 2.2	Solution Flowchart for PSO Algorithm	28
Fig. 2.3	Pseudo Code of PSO	29
Fig. 2.4	Pseudo Code of FFO	31
Fig. 2.5	Solution Flowchart for FFO Algorithm	33
Fig. 4.1	General Layout of Electricity Grid	59
Fig. 4.2	Peak Demand Growth Rate Vs. GDP	64
Fig. 4.3	Energy Demand Growth Rate Vs. GDP	64
Fig. 4.4	Development of the Installed Capacities and Peak Demand	65
Fig. 4.5	Cumulative Probability of the Available Reserve	70
Fig. 5.1	Asset Management Conclusion – Base Case Scenarios	79
Fig. 5.2	Annual Installed Capacity vs. Annual Peak Demand (MW) – Base Case Scenarios	82

Fig. 5.3	Annual Generated Energy vs. Annual Energy Demand (GWh) – Base Case Scenarios	82
Fig. 5.4	System Capacity Topology – Year 2039/2040 – Base Case Scenarios	84
Fig. 5.5	System Energy Generated Topology – Year 2039/2040 – Base Case Scenarios	85
Fig. 5.6	Primary Sources Consumption – Milestone Years – Base Case Scenarios	87
Fig. 5.7	Herfindahl-Hirschmann Index (HHI) – Milestone Years – Base Case Scenarios	
Fig. 5.8	CO ₂ Emissions in the System (kt) – Base Case Scenarios	89
Fig. 5.9	Avoided CO ₂ Emissions in the System (kt) – Base Case Scenarios	90
Fig. 5.10	Current Cost / MWh (USD/MWh) – Base Case Scenarios	91
Fig. 5.11	Discounted Cost / MWh (USD/MWh) – Base Case Scenarios	91
Fig. 5.12	Investment Costs of Added Capacities by the Final Year – Base Case Scenarios	92
Fig. 5.13	Cumulative Conclusion – Year 2039/2040 – Base Case Scenarios	93
Fig. 5.14	Annual Peak Demand (MW) at Different GDP Values	95
Fig. 5.15		95