

## ROLE OF PET/CT IN FOLLOW UP OF POST THERAPEUTIC COLORECTAL CANCER

Thesis

### Submitted for partial fulfillment of DoctorateDegree in Diagnostic Radiology

Presented by

#### **Mohamed Shaaban Mohamed Bayoumy Elsaawa**

(M.B.B.Ch.AIN SHAMS UNIVERSITY) - (M Sc .AIN SHAMS UNIVERSITY)

Supervised by

#### Prof. Dr. Abeer Abdel Maksoud Hafez

Professor of Diagnostic Radiology
Faculty of Medicine, Ain Shams University

#### **Prof. Dr. Samer Malak Botros**

Professor of Diagnostic radiology
Faculty of Medicine, Ain Shams University

#### Dr. Merhan Ahmed Nasr

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018



# دور التصوير الطبقي بالبوزيترون المنبعث المدمج مع الائشعة المقطعية في متابعة مرضى أورام المستقيم □والقولون بعد العلاج

رسالة,

توطئة للحصول علي درجة الدكتوراة في الأشعة التشخيصية مقدمة من

□ محمد شعبان محمد بيومي الصعوة/الطبيب بكالوريوس الطب و الجراحة تحت إشراف

□أد/ عبير عبد المقصود

*أستاذ الأشعة التشخيصية* كلية الطب- جامعة عين شمس

بطرس أد/ سامر ملاك

استاذ الاشعة التشخيصية

كلية الطب- جامعة عين شمس

د/ میرهان أحمد نصر

مدرس *الأشعة التشخيصية* كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٨



سورة البقرة الآية: ٣٢



First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Abeer Abdel Maksoud Hafez**, Professor of Diagnostic Radiology, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Samer Malak Botros,** Professor of Diagnostic radiology,

Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Merhan Ahmed Nasr,** Lecturer of Radiodiagnosis, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

## **CONTENTS**

| Subjects                                    | Page     |
|---------------------------------------------|----------|
| • List of Abbreviations                     | I        |
| • List of table                             | III      |
| List of Figures                             | <b>V</b> |
| • Introduction                              | 1        |
| Aim of the Work                             | 2        |
| Review of literature:                       |          |
| Chapter 1: Colorectal anatomy               | 3        |
| Chapter 2: Pathology of colorectal cancer   | 14       |
| Chapter 3: Physical Background and Technica | al       |
| Aspects of PET/CT                           | 32       |
| Chapter 4: PET/CT in colorectal cancer      | 64       |
| Patients And Methods                        | 92       |
| Results                                     | 101      |
| Case presentation                           | 116      |
| • Discussion                                | 141      |
| Summary and conclusions                     | 157      |
| References                                  | 161      |
| Arabic Summary                              |          |

#### **LIST OF ABBREVIATIONS**

μ maps : Attenuation map

**18F-FDG**: <sup>18</sup>F- FluoroDeoxyGlucose

**AC/AL** : Attenuation correction/Alignment **ACFs** : Attenuation correction factors

**CECT**: Contrast enhanced computed tomography

**CR** : Complete Response

**CRu** : unconfirmed complete response

**CT** : Computed Tomography

**ESR** : Erythrocyte sedimentation rate

**F 18** : Fluorine 18

FDG : FluoroDeoxyGlucose
GLUT : Glucose Transporters
GSO : Gadolinium Silicate

**GTD** : Greatest transverse diameter

H+ : Hydrogen ion H2 (F-18) : Hydrogen fluoride

**IV** : Intravenous

**IWC** : International Workshop Criteria

**KeV** : Kilo electron Volt

**KV** : Kilo Volt

LDH : Lactate dehydrogenase LSO : Lutetium Oxyorthosilicate

**MCi**: Micro Curies

**MeV** : Mega electron Volt

**Mo** : Months

**MRI** : Magnetic Resonance Imaging

N : Neutron, P : Proton

**PD** : Progressive disease

**PERCIST**: PET Response Criteria in Solid Tumors

**PET**: Positron Emission Tomography

**PET/CT** Positron Emission Tomography/ Computed

Tomography

PFS : Progression Free Survival PMTs : Photomultiplier tubes PR : Partial Response

**RECIST**: Response Evaluation Criteria in Solid Tumors

**SD** : Stable disease

#### **EList of Abbreviations**

**SLL** : Small-cell lymphocytic lymphoma

**SPD** : Sum Of The Products Of The Greatest Diameters

β- : Electron β+ : Positron

**SUV** : Standardized Uptake Value

**SUVavg** : Average Standardized Uptake Value **SUVmax** : Maximum Standardized Uptake Value

**US** : Ultrasound

**WBC**: White blood cells

**WHO**: World Health Organization

Wt : Weight

**XRT** : Radiotherapy

γ : Photon

## **LIST OF TABLE**

| Tab. No.   | Subject                                                                                                                               | Page |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| Table (1)  | Dukes classification                                                                                                                  | 27   |
| Table (1)  | TNM Staging system for colon cancer                                                                                                   | 27   |
| Table (2)  | Showing the imaging properties of various PET                                                                                         | 43   |
| Table (3)  | crystals                                                                                                                              | 43   |
| Table (4)  | Descriptive statistics for the study population as regards their basic demographic data                                               | 102  |
| Table (5)  | Descriptive statistics for levels of tumor markers in the study population.                                                           | 103  |
| Table (6)  | Summary of the number of patients with positive or negative scans.                                                                    | 104  |
| Table (7)  | summary of number of patients who received (or not)therapy (chemo or radio therapy) after the initial PET/CT.                         | 104  |
| Table (8)  | Comparison of mSUV of lesions in the different anatomical sites in the initial PET/CT scan with the SUV average.                      | 104  |
| Table (9)  | Comparison of mSUV of lesions in the different anatomical sites in the Follow up PET/CT scan with the SUV average. (liver $2.5 - 3$ ) | 105  |
| Table (10) | Summary of the Evaluation of therapeutic response in patients                                                                         | 105  |
| Table (11) | Summary of the number and mSUV of lesions in the different anatomical sites in the initial PET/CT scan                                | 106  |
| Table (12) | Summary of the number and mSUV of lesions in the different anatomical sites in the follow up PET/CT scan.                             | 107  |
| Table (13) | Analysis of number and mSUV of local lesions in the initial and follow up PET/CT scans.                                               | 108  |
| Table (14) | Analysis of number and mSUV of hepatic lesions in the initial and follow up PET/CT scans.                                             | 108  |
| Table (15) | Analysis of number and mSUV of lymph node lesions in the initial and follow up PET/CT scans.                                          | 109  |

## **⊠**List of Table

| Tab. No.   | Subject                                                                                                  | Page |
|------------|----------------------------------------------------------------------------------------------------------|------|
|            |                                                                                                          |      |
| Table (16) | Analysis of number and mSUV of peritoneal lesions in the initial and follow up PET/CT scans              | 110  |
| Table (17) | Analysis of number and mSUV of pulmonary lesions in the initial and follow up PET/CT scans               | 111  |
| Table (18) | Analysis of number and mSUV of osseous lesions in the initial and follow up PET/CT scans.                | 112  |
| Table (19) | Analysis of number and mSUV of adrenal lesions in the initial and follow up PET/CT scans.                | 113  |
| Table (20) | Analysis of number and mSUV of abdominal wall lesions in the initial and follow up PET/CT scans.         | 114  |
| Table (21) | Analysis of number and mSUV of skin, muscle and brain lesions in the initial and follow up PET/CT scans. | 115  |

## **LIST OF FIGURES**

| Fig. No.         | Subject                                                                                                                                                                                 | Page |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>Fig.</b> (1)  | large intestine                                                                                                                                                                         | 3    |
| <b>Fig.</b> (2)  | Anatomy of the anal canal & rectum                                                                                                                                                      | 7    |
| <b>Fig.</b> (3)  | Colon Layers                                                                                                                                                                            | 8    |
| <b>Fig.</b> (4)  | Blood supply of the large intestine.                                                                                                                                                    | 10   |
| Fig. (5)         | Venous drainage of the large intestine.                                                                                                                                                 | 11   |
| Fig. (6)         | Lymphatic drainage of the large intestine.                                                                                                                                              | 13   |
| Fig. (7)         | Gross features of cancer colon                                                                                                                                                          | 19   |
| Fig. (8)         | Spread of cancer colon                                                                                                                                                                  | 24   |
| Fig. (9)         | TNM staging of cancer colon                                                                                                                                                             | 28   |
| Fig. (10)        | Illustrative diagram of combined PET/CT scanner components.                                                                                                                             | 33   |
| Fig. (11)        | Photograph (side view) of a hybrid PET-CT scanner shows the PET (P) and CT (C) components.                                                                                              | 36   |
| Fig. (12)        | Typical imaging protocol for combined PET/CT                                                                                                                                            | 36   |
| Fig. (13)        | Positron-electron annihilation reaction.                                                                                                                                                | 38   |
| Fig. (14)        | Glucose and fluorodeoxyglucose structure.                                                                                                                                               | 39   |
| <b>Fig.</b> (15) | Uptake of 18F-FDG.                                                                                                                                                                      | 40   |
| Fig. (16)        | Graph shows bilinear scaling function used to convert CT numbers to linear attenuation values at 511 keV.                                                                               | 48   |
| Fig. (17)        | Mean positron range and annihilation angle blurring. Positrons ( $\beta$ +) travel a small distance called the mean positron range (a) before annihilating with electrons ( $\beta$ -). | 49   |
| Fig. (18)        | Coincidence imaging. Although the photons emitted by annihilation points A and C are in coincidence                                                                                     | 50   |
| Fig. (19)        | Current commercial PET/CT scanners from 4 major vendors of PET imaging equipment                                                                                                        | 51   |
| Fig. (20)        | Normal distribution of 18F-FDG.                                                                                                                                                         | 55   |
| Fig. (21)        | Physiologic muscle activity.                                                                                                                                                            | 55   |
| Fig. (22)        | Bowel uptake. 18F-FDG-PET whole-body scan for staging of inflammatory carcinoma of the left breast                                                                                      | 57   |

## ₤ List of Figures

| Fig. No.         | Subject                                                                                             | Page |
|------------------|-----------------------------------------------------------------------------------------------------|------|
|                  | 61-y-old patient with lung cancer who ingested                                                      | 59   |
| Fig. (23)        | barium for an esophagogram 1 d before PET/CT                                                        |      |
|                  | scan.                                                                                               |      |
|                  | High-density metallic implants generate                                                             | 60   |
| Fig. (24)        | streaking artifacts and high CT numbers (arrow)                                                     |      |
|                  | on CT image.                                                                                        |      |
|                  | Curvilinear cold artifact (arrow) is commonly                                                       | 61   |
| Fig. (25)        | seen on dome of diaphragm/liver or at lung base                                                     |      |
| <b>g</b> · ()    | because of respiration mismatch on PET images                                                       |      |
| F: (2.6)         | with CT attenuation correction                                                                      |      |
| Fig. (26)        | 58-y-old man with colon cancer.                                                                     | 62   |
| Fig. (27)        | Attenuation-corrected axial fused 18F-FDG                                                           | 63   |
| Fig. (27)        | PET/CT image shows a focus of                                                                       |      |
|                  | hypermetabolism in the left axilla (arrow).                                                         | 67   |
| Fig. (28)        | Midline distal left primary colon carcinoma at an unusual location related to anatomical variation. | 07   |
|                  | Intense hypermetabolic activity in a cecal                                                          | 72   |
|                  | carcinoma primary lesion with multiple adjacent                                                     | 12   |
| <b>Fig.</b> (29) | foci of uptake identified consistent with diffuse                                                   |      |
|                  | peritoneal metastasis                                                                               |      |
|                  | (A) Focal intense radiotracer uptake in a                                                           | 73   |
|                  | subcentimeter left pelvic side wall lymph node is                                                   |      |
| E' (20)          | consistent with metastasis. (B) Axial fusion                                                        |      |
| Fig. (30)        | PET/CT image in the same patient 3months later                                                      |      |
|                  | demonstrates enlargement of the same pelvic side                                                    |      |
|                  | wall lymph node                                                                                     |      |
|                  | A 54-year-old man with recent diagnosis of colon                                                    | 74   |
|                  | carcinoma and liver metastases. There is a large                                                    |      |
| Fig. (31)        | focus of increased tracer activity in the known                                                     |      |
|                  | primary sigmoid tumor with panlobar hepatic                                                         |      |
|                  | metastases and possibly peritoneal deposits in the                                                  |      |
|                  | right paracolic gutter                                                                              | 75   |
|                  | Axial fusion PET/CT demonstrates intense focal                                                      | 75   |
|                  | radiotracer uptake on the lateral margin of a radiofrequency ablation site in the liver.            |      |
| Fig. (32)        | Recurrent disease was not apparent on                                                               |      |
|                  | conventional imaging                                                                                |      |
|                  | conventional imaging                                                                                |      |
|                  |                                                                                                     |      |
| L                | <u> </u>                                                                                            |      |

## ₤ List of Figures

| Fig. No.         | Subject                                                                              | Page |
|------------------|--------------------------------------------------------------------------------------|------|
| Fig. (33)        | A 33-year-old man under going ascending colon                                        | 81   |
|                  | cancer resection two years ago. Coronal PET                                          |      |
|                  | image                                                                                |      |
|                  | Patient status post left hemicolectomy for colon                                     | 82   |
| Fig. (34)        | cancer without change in CEA level. MR                                               |      |
| 11g. (34)        | imaging indicated a lesion in segment VII of the                                     |      |
|                  | liver with high signal on T2                                                         |      |
| Fig. (35)        | Patient status post left hemicolectomy for colon                                     | 83   |
| 118 (00)         | cancer and increasing CEA level                                                      |      |
| Fig. (36)        | Box Plots of age, weight and height of the study                                     | 102  |
| 116. (50)        | population.                                                                          |      |
| Fig. (37)        | Box Plots of levels of tumor markers CA 19-9,                                        | 103  |
|                  | CEA and AFP in the study population.                                                 |      |
| Fig. (38)        | post treatment axial fused PET/CT                                                    | 116  |
| Fig. (39)        | post treatment axial fused PET/CT                                                    | 117  |
| Fig. (40)        | pre and post treatment whole body MIP PET                                            | 117  |
| Fig. (41)        | pre and post treatment axial fused PET/CT                                            | 119  |
| Fig. (42)        | pretreatment axial CT & PET/CT                                                       | 120  |
| Fig. (43)        | pre and post treatment axial fused PET/CT                                            | 120  |
| 116. (10)        | images of the lung                                                                   |      |
| Fig.(44)         | pre and post treatment axial fused PET/CT                                            | 122  |
|                  | images of the pelvis.                                                                |      |
| Fig. (45)        | pre and post treatment axial fused PET/CT                                            | 123  |
| <b>8</b> -()     | images of the liver.                                                                 | 100  |
| Fig. (46)        | pre and post treatment axial fused PET/CT                                            | 123  |
| <b>8</b> ( )     | images of the neck.                                                                  | 105  |
|                  | (A) axial CT of the pelvis. (B) axial fused                                          | 125  |
| T' (45)          | PET/CT of the pelvis. Showing Irregular soft                                         |      |
| <b>Fig.</b> (47) | tissue thickening and enhancement related to anal                                    |      |
|                  | canal and increased FDG uptake with SUVm=6.                                          |      |
|                  | 4(SUVa = 3)                                                                          | 126  |
| <b>Fig.</b> (48) | post treatment sagittal and axial fused PET/CT images of the pelvis                  | 126  |
| Fig. (49)        | coronal whole body fused PET/CT                                                      | 127  |
| Fig. (50)        | pre and post treatment whole body MIP/ Pet                                           | 128  |
| Fig. (51)        | axial fused PET/CT image axial fused PET/CT                                          | 128  |
|                  | axial fused PET/CT image axial rused PET/CT axial fused PET/CT images of the abdomen | 131  |
| Fig. (52)        | Ü                                                                                    |      |
| <b>Fig.</b> (53) | (A & B) axial CT and (C&D) axial fused                                               | 132  |

## € List of Figures

| Fig. No.         | Subject                                         | Page |
|------------------|-------------------------------------------------|------|
|                  | PET/CT images of the abdomen.                   |      |
| Fig. (54)        | coronal whole body MIP image.                   | 133  |
| Fig. (55)        | pre -treatment axial fused PET/CT images of the | 134  |
|                  | abdomen                                         |      |
| <b>Fig.</b> (56) | axial CT images of the abdomen                  | 137  |
| Fig. (57)        | previous axial CT and fused axial PET/CT        | 138  |
|                  | images of the abdomen                           |      |
| Fig. (58)        | (A) pre and (B) post therapy axial fused PET-CT | 139  |
|                  | images of the abdomen                           |      |

#### **ABSTRACT**

**Background:** Colorectal cancer (CRC) is one of the most common malignancies worldwide and is a major health problem in developed countries with local and distant recurrences develops in 30-50% of patients during follow-up after primary surgery. Aim of the Work: The present study is aiming at emphasizing the role of PET/CT in follow up of patients with colorectal carcinoma after treatment, as well as detection of local recurrence and distant metastasis. *Methods*: the study included 25 patients with past history of colorectal cancer, they underwent PET/CT examination with the following protocol: patients were fasting for at least 6 hrs before undergoing scanning. A standard dose of 1-1.5 mCi/kg of F-FDG was intravenously injected 45-60 mins before imaging then initially low dose CT was performed for attenuation correction. After that PET emission scanning was performed immediately after the CT. this was followed by diagnostic CT using IV contrast administration and hyperosmolar oral contrast (diluted mannitol solution) to achieve bowel distension. All data acquired a combined PET/CT in-line system. Results: The study showed that there is significant paired differences between the number of local lesions as well as metastatic deposition detected in the initial and follow up PET/CT. Conclusion: FDG PET/CT is extremely useful for therapy response assessment due to its capacity to help distinguish between residual metabolically active tumor and areas of nectrosis and fibrosis, thus identifying which of these patients have achieved satisfactory functional remission and which one of them needs further treatment.

*Keywords:* CRC: Colorectal cancer; PET: Positron emission tomography; CEA; Carcino embryonic antigen

#### INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignancies worldwide and is a major health problem in developed countries with local and distant recurrences develops in 30–50% of patients during follow-up after primary surgery. (Wichmann et al., 2015)

Colorectal imaging advances with magnetic resonance (MR), CT colonography (CTC), and positron emission tomography (PET) over the past year or so have been substantial. (*Perry*, 2015)

18F-fluorodeoxyglucose (FDG) PET/CT is well established as a diagnostic tool in the evaluation of patients with rising Carcino embryonic antigen (CEA) and suspected recurrence of colorectal cancer. (*Lu, et al., 2013*)

The early detection of recurrence is vital because surgery, radiotherapy and chemotherapy (either separately or as part of a multidisciplinary approach) may improve patient survival and quality of life. Although only 20–30% of patients with recurrent metastatic disease are suitable candidates for curative resection, the five-year survival rate in this group is 30–40%. (*Elias et al.*, 2014).