

Neutrophil Lymphocyte Ratio and Platelet Lymphocyte Ratio as Diagnostic and Prognostic Markers for Hepatitis C Virus – Related Hepatocellular Carcinoma in Egyptian Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in **Tropical Medicine**

By

Mohamed Ahmed Ghanem

(M.B.B.Ch.)

 $Faculty\ of\ Medicine-Ain\ Shams\ University$

Under Supervision of

Prof. Eman Mohamed El-Gindy

Professor of Tropical Medicine Faculty of Medicine – Ain Shams University

Assist.Prof. Iman Mohamed Fawzy Montasser

Assistant Professor of Tropical Medicine Faculty of Medicine – Ain Shams University

Assist.Prof. Wessam El Sayed Saad

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University 2018

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Eman Mohamed El- Gindy**, Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Assist. Prof. Iman

Mohamed Fawzy Montasser, Assistant Professor of

Tropical Medicine, Faculty of Medicine, Ain Shams

University, for her sincere efforts, fruitful
encouragement.

I am deeply thankful to Assist. Prof. Wessam & Sayed Sand, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

Mohamed Ahmed Ghanem

Tist of Contents

Title	Page No.
List of Tables	4
List of Figures	6
List of Abbreviations	7
Introduction	1 -
Aim of the Work	4
Review of Literature	
• HCC	5
■ Inflammatory Markers	59
Patients and Methods	75
Results	82
Discussion	105
Summary	113
Conclusion	116
Recommendations	117
References	118
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	American Joint Committee on (AJCC) TNM Staging for Liver T (7th ed., 2010)	umors
Table (2):	Okuda Staging System for HCC	41
Table (3):	ECOG performance status	43
Table (4):	Comparison between the different groups regarding the demographic (n=174)	e data
Table (5):	Important clinical findings in HC CLD patients	
Table (6):	Child score of HCC and CLD patien	ts86
Table (7):	Child classification of HCC patients	87
Table (8):	Distribution of the studied HCC pa according to BCLC classification	
Table (9):	Presence of main PVT in HCC and patients	
Table (10):	Comparison between laboratory find in HCC and CLD patients	•
Table (11):	Comparison between the different s patients groups as regards AFP, NL PLR.	AR and
Table (12):	The comparison between all s subjects regarding pre intervention (n=174)	n NLR
Table (13):	The comparison between the dis subgroups regards pre intervention	

Tist of Tables cont...

Table No.	Title	Page	No.
Table (14):	The comparison between the diff subgroups regards pre intervention		94
Table (15):	Comparison between RFA and subgroups as regards post intervenAFP, NLR and PLR.	ention	95
Table (16):	Comparison between RFA and subgroups regards pre and intervention Child Score	post	96
Table (17):	Comparison between RFA and subgroups regards pre and intervention AFP	post	97
Table (18):	Comparison between RFA and subgroups regards pre and intervention PLR	post	98
Table (19):	Comparison between RFA and subgroups regards pre and intervention NLR	post	99
Table (20):	Correlation between the pre-intervented NLR, PLR and the other different cand laboratory values (n=71)	linical	100
Table (21):	Receiver operator curve for the N PLR		101
Table (22):	Receiver operator Curve for AFP		104

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Cellular signaling pathways implica hepatitis C virus (HCV) core pr related hepato-carcinogenesis	otein-
Figure (2):	Mechanisms of hepatocarcinogenesis	s16
Figure (3):	Diagnostic algorithm and recall police	ey45
Figure (4):	BCLC staging classification treatment schedule	and 46
Figure (5):	The complex interactions involved in role of inflammation in the progression spectrum	ancer
Figure (6):	Functions of lymphocytes in liver car	ncer68
Figure (7):	Receiver operator curve for the NLR	102
Figure (8):	Receiver operator curve for the PLR.	103
Figure (9):	Receiver operator curve for the AFP.	104

Tist of Abbreviations

Abb. Full term	
A1ATDAlpha-1-antitrypsin deficiency	
AASLD American Association for the Study of	
Liver Diseases	
Aflatoxin B1 AFB1	
AFPAlpha fetoprotein	
AFP α -fetoprotein	
AFP-L3 Alpha-fetoprotein L3	
AFT Aflatoxins	
AFUAlpha-l-fucosidase	
AJCCAmerican Joint Committee on Cancer	
ALOXLipoxygenase	
APR Acute phase proteins	
BCLC Barcelona Clinic Liver Cancer	
BCSBudd-Chiari syndrome	
CBCComplete blood count	
CLIPCancer of the Liver Italian Program	
COXCyclooxygenase	
CRPC-reactive protein	
CTLCytotoxic T lymphocytes	
CUPI Chinese University Prognostic Index	
DAAs Direct acting antivirals	
DCP Des-gamma carboxyprothrombin	
DCs Dendritic cells	
EASL European Association for the Study of the	ıe
Liver	
ECOG Eastern Cooperative Oncology Group	
EFAs Essential fatty acids	
EGF Epidermal growth factor	
ESR Erythrocyte sedimentation rate	
FGF Fibroblast growth factor	
GGTGamma-glutamyl transferase	
GPC3Glypican-3	
HBsAg Hepatitis B surface antigen	
HBV Hepatitis B virus	

Tist of Abbreviations cont...

Abb.	Full term
исс	Uanatagallular garginama
	Hepatocellular carcinoma Hepatitis C virus antibody
	Hepatitis C virus antibody Hepatitis C virus
	Hepatitis C virus Hepatoma-derived growth factor
	Hepatochia-derived growth factor
	Hereditary hemochromatosis
	Hepatoma specific gamma-glutamyl
115 001	transferase
HVPG	Hepatic Venous Pressure gradient
	Intrahepatic cholangio-carcinoma
	Insulin Growth Factor-2
IGF-II	Insulin growth factor-II
IGFs	Insulin-like growth factors
IVC	Inferior vena cava
JIS	Japan Integrated Staging
LCAR	Lens culinaris agglutinin-reactive
LMR	Lymphocyte-to-monocyte ratio
LT	Liver transplantation
mAFP	Monosialylated AFP
	Milan criteria
	Myeloid-derived suppressor cells
	Model for end stage liver disease
	Modified Glasgow Prognostic Score
	Egyptian Ministry of Health
	Monosialylated AFP
NAFLD	Nonalcoholic fatty liver disease
	Non-alcoholic steatohepatitis
	Nuclear factor-kappaB
	Neutrophil/ lymphocyte ratio
	Nitric oxide synthase
	Negative predictive value
	Orthotopic liver transplantation
OS	Overall survival

Tist of Abbreviations cont...

Abb.	Full term
DDCE	
	Platelet-derived growth factor
	Percutaneous Ethanol Injection
PGs	<u> </u>
	Vitamin K absence or antagonist II
	Platelet-to-lymphocyte ratio
	Microwave ablation
PPV	Positive predictive value
PVT	Portal venous thrombosis
PVT	Portal venous thrombosis
RFA	Radiofrequency Ablation
RNS	Reactive nitrogen species
ROC	Receiver operator Curve
ROS	Reactive oxygen species
SAA	Serum Amyloid A
SCCA	Squamous cell carcinoma antigen
TACE	Trans arterialradioembolization
TARE	Arterialradioembolization
TGF-β1	Transforming growth factor b1
TILs	Tumor infiltrating lymphocytes
TNM	Tumor-Node-Metastasis Staging System
	Tumor-specific growth factor
UCSF	University of California San Francisco
	criteria
US	Ultrasound
VEGF	Vascular endothelial growth factor
WBC	

Introduction

epatocellular carcinoma (HCC), a highly prevalent and lethal cancer, is the sixth most common cancer and the third leading cause of cancer-related death worldwide (*Ferlay et al.*, 2010).

Hepatitis C virus (HCV) is a common cause of hepatocellular injury that is associated with complex and vigorous immunologic mechanisms. Both humoral and cell-mediated immune responses participate in the host defense against HCV infection, but it is increasingly recognized that cell mediated response to the cytokine system plays a role in the immunopathogenesis of chronic hepatitis C (*Jacobson and Neuman*, 2001).

The annual risk to develop HCC in patients with liver cirrhosis is 5% (1–7%), with a published prevalence between 7.4 and 23% found in necropsies of this group of patients. Cirrhosis is present in 80–90% of patients with this type of cancer (*Aguayo and Patt, 2001*). Chronic hepatitis C appears to be the major risk factor for HCC in comparison to other risk factors (*Parkin et al., 2005*).

A recent meta-analysis including 19 studies has showed that ultrasound (US) surveillance detected the majority of HCC tumors before they presented clinically, with a pooled sensitivity of 94%. However, US was less effective for

detecting early-stage HCC, with a sensitivity of only 63% (Singal et al., 2009).

Mild-moderate elevations in total Alpha-fetoprotein (AFP) and *Des-gamma carboxyprothrombin* (DCP) but not in Alpha-fetoprotein L3 (AFP-L3) occur frequently in patients with chronic hepatitis C and advanced fibrosis, are related to factors other than HCC, and are poor predictors of HCC (*Sterling et al.*, 2012).

There are increasing evidences that the presence of systemic inflammation correlates with poorer cancer-specific survival in certain cancers. Various markers of systemic inflammatory response, including cytokines, C-reactive protein (CRP), and absolute blood neutrophil or lymphocyte count as well as their ratio such as neutrophil-to-lymphocyte ratio (NLR) have been investigated for their prognostic roles in certain cancer populations (*Zahorec et al., 2001 and Jung et al., 2011*). Studies had demonstrated that an elevated NLR may correlate with a poor prognosis in patients with HCC who underwent transcatheter arterial chemoembolization (TACE) (*Huang et al., 2011*), curative resection (*Gomez et al., 2008*) and orthotopic liver transplantation (OLT) (*Halazun et al., 2009*).

Elevated levels of biomarkers of inflammation and hyperinsulinemia are associated with a higher risk of HCC, independent of obesity and established liver cancer risk factors (Aleksandrova et al., 2014). It is clear that inflammation plays a significant role in tumor progression (Colotta et al., 2009).

Platelet lymphocyte ratio (PLR) was identified as an independent prognostic factor for advanced HCC patients not receiving systemic sorafenib; the predictive ability of PLR partially relies on its association with the aggressive nature of HCC (*Li et al., 2013*). A preoperative elevated NLR significantly increased the risk for tumor recurrence in HCC patients after Liver Transplantation (*Xiao et al., 2013*).

The NLR is a readily available and inexpensive bio marker, and its addition to established prognostic scores for clinical decision making warrants further investigation (*Templeton et al.*, 2014).

Aim of the Work

- To evaluate the role of inflammatory markers Neutrophil lymphocyte ratio and Platelet lymphocyte ratio (NLR & PLR) as biomarkers for diagnosis of HCV related HCC.
- To evaluate their role as prognostic markers before and after different Therapeutic interventions of HCC.

HCC

epatocellular carcinoma (HCC), is the sixth most common cancer and the third leading cause of cancer-related death worldwide (*Ferlay et al.*, 2010). Owing to changes in the prevalence of the two major risk factors, hepatitis B virus and hepatitis C virus, its overall incidence remains alarmingly high in the developing world and is steadily rising across most of the developed world (*Yang and Ronerts*, 2010a). Hepatocellular carcinoma is a major health problem worldwide as more than 700,000 cases are diagnosed yearly (*Bazine et al.*, 2014).

Epidemiology & Incidence of HCC:

The World Health Organization (WHO) indicates HCC as the second leading cause of cancer-related death in humans due to its high incidence in the East, in areas of Africa, and in the Western Pacific (*Gomes et al.*, 2013).

The annual risk of HCC in patients with liver cirrhosis is 5% (1–7%), with a published prevalence between 7.4 and 23% found in necropsies of this group of patients. Cirrhosis is present in 80–90% of patients with this type of cancer (*Aguayo and Patt*, 2001). Increases in liver cancer incidence are not only confined to the developed world but have also been observed in less developed regions such as Egypt where rising rates are attributed to extensive HCV transmission from contaminated

needles used for parenteral antischistosomal therapy between the 1950s and 1980s (*Shaker et al.*, *2013*).

The highest liver cancer incidence rates in the world were reported by registries in Asia and Africa. Approximately 85% of all liver cancers occur in these areas, with Chinese registries alone, reporting over 50% (*Ferlay et al.*, 2010).

Risk factors:

1- Hepatitis C Virus Infection

Hepatitis C virus is a Hepacivirus that infects hepatocytes and some lymphocytes. It chronically infects about 120–170 million people world-wide, resulting in about 350,000 deaths annually (*Donlin et al.*, 2014). The knowledge of the natural history of hepatitis C is still incomplete, because the acute infection is often asymptomatic in many individuals, as demonstrated in the epidemiological studies involving HCV infection and hemotherapy centers (*Thimme et al.*, 2001). While the incidence rate of HCV infection is apparently decreasing in the developed world, deaths from liver disease secondary to HCV infection will continue to increase over the next 20 years (*Razavi et al.*, 2013). Chronic hepatitis C appears to be the major risk factor for HCC in comparison to other risk factors (*Parkin et al.*, 2005).