

In Vitro Appraisal of Potential Association between Some Virulence Factors and Resistance to Antifungal Agents in Candida albicans Recovered from Different Clinical Specimens

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master's Degree

In Pharmaceutical Sciences

(Microbiology and Immunology)

By

Houdaii Housam El-Houssaini Ahmed Khalil

Bachelor of Pharmaceutical Sciences,

Faculty of Pharmacy, Misr International University, 2011

2018

In Vitro Appraisal of Potential Association between Some Virulence Factors and Resistance to Antifungal Agents in Candida albicans Recovered from Different Clinical Specimens

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master's degree

In Pharmaceutical Sciences

(Microbiology and Immunology)

By

Houdaii Housam El-Houssaini Ahmed Khalil

Bachelor of Pharmaceutical Sciences

Faculty of Pharmacy, Misr International University, 2011

Under Supervision of

Prof. Dr. Walid Faisal Ahmed Elkhatib, PhD

Professor of Microbiology and Immunology,

Faculty of Pharmacy, Ain Shams University

Dr. Omnia Mohamed Elnabawy, MD

Assistant professor of Clinical Pathology and Microbiology, Faculty of Medicine, Ain Shams University

ACKNOWLEDGMENTS

First and foremost my thanks must go to "Allah" for granting me the power to accomplish this work.

Special words of thanks and deep everlasting gratitude are directed to **Prof. Dr. Walid Faisal Ahmed Elkhatib,** Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams

University, for suggesting the point of my research, planning the work, scientific supervision, valuable discussions and constructive criticism throughout this study. He saved no effort to supply me with the required facilities to achieve this work. He also spared me a lot of his valuable time in revising this thesis.

I am also indebted to **Assoc. Prof. Dr. Omnia Mohamed Elnabawy**, Assistant Professor of Clinical Pathology and Microbiology, Faculty of Medicine, Ain Shams University, for her continuous support and motivation. I would like to express my deepest and most sincere gratitude for her immense patience and encouragement throughout my studies, valuable discussion, brilliant comments, precious advice and constant effort on revision of the thesis.

I would like to express my deep gratitude and sincere appreciation to **Dr. Hebatallah Ahmed Nasser,** Lecturer of Microbiology and Public Health, Department of Microbiology and Public Health, Heliopolis University for Sustainable Development, for her continuous guidance and supervision throughout the whole work. The thesis would not have been possible without her consistent support. I shall always be deeply indebted for her encouragement, guidance and support from the initial to the final level.

My deepest everlasting thanks and appreciation are for my beloved **grandparents**, **mom**, and **siblings** who have never failed to give me support and encouragement throughout my life. I would like to thank with all my heart all my **friends** and **colleagues** and I offer my regards and blessing to all of those who supported me in any respect during the completion of this thesis.

Houdaii H.

LIST OF CONTENTS

LIST OF CONTENTS	I
LIST OF ABBREVIATIONS	\mathbf{V}
LIST OF FIGURES	VIII
LIST OF TABLES	X
ABSTRACT	1
INTRODUCTION	4
LITERATURE REVIEW	6
1. Candida albicans	6
1.1. Historical background	6
1.2. Taxonomy and mycology	7
1.3. Morphogenesis	7
1.4. Cell biology	8
1.5. The switch from commensalism to pathogenesis (Candidiasis)	9
2. Virulence of Candida albicans	12
2.1. Polymorphism	13
2.2. Phenotypic switching	14
2.3. Adhesins and invasins	14
2.4. Secreted hydrolases	16
2.5. Biofilm formation	17
2.6. Environmental stress response	19
2.7. pH sensing and regulation	20
2.8. Metabolic adaptation	20
2.9. Metal acquisition	21

3.	Lab diagnosis of Candidiasis	22
	3.1. Specimen collection	23
	3.2. Direct microscopic examination	23
	3.3. Isolation on culture media	24
	3.4. Phenotypic identification of <i>C. albicans</i>	26
	3.5. Serologic diagnosis	28
	3.6. Metabolic diagnosis	29
	3.7. Genotypic identification of <i>Candida</i> spp	29
4.	Targets of antifungal therapy	31
	4.1. Fungal cell membrane	32
	4.2. Fungal cell wall.	33
	4.3. Inhibition of nucleic acids, proteins and microtubules	34
	4.4. Inhibition of heat shock protein 90 (Hsp90)	34
	4.5. Inhibition of calcineurin signaling	34
5.	Resistance to antifungal agents	35
	5.1. Polyenes resistance	36
	5.2. Azoles resistance	36
	5.3. Echinocandins resistance	38
	5.4. Flucytosine resistance	38
	5.5. Biofilm- associated antifungal resistance	38
6.	Strategies to overcome antifungal resistance	42
	6.1. Combinational therapy	42
	6.2. Chemical structure modification and new antifungal formulations	43
	6.3. New antifungal targets	45
	6.4 Antifungal immunotherany	45

MSc thesis 2018 Page II

MAT	ERIALS AND METHODS	47
MAT	ERIALS	47
1.	Microorganisms	47
2.	Chemicals	47
3.	Instruments and other materials	49
4.	Buffers, solutions and reagents	50
5.	Media and media ingredients	52
MET	HODS	58
6.	Identification of Candida spp. and selection of C. albicans isolates	58
7.	Antibiogram analysis of C. albicans isolates against some antifungal agents	58
	7.1.Disk diffusion method	59
	7.2.Broth microdilution method	59
8.	Assessment of virulence factors production on the phenotypic level	60
	8.1.Phospholipase assay	60
	8.2.Aspartyl protease assay	61
	8.3.Haemolysin assay	61
	8.4.Cell surface hydrophobicity	62
	8.5.Biofilm formation	62
9.	Evaluation of potential correlation between antifungal resistance and virulence factors	63
10	Effect of sub-inhibitory antifungal concentrations on some virulence factors production	64
	10.1. Secreted hydrolases assays	64
	10.2. Biofilm formation	65
	10.3. Scanning electron microscopy	65
	10.4. Statistical analysis.	66

MSc thesis 2018 Page III

RESULTS	67
1. Identification of <i>Candida</i> spp. and selection of <i>C. albicans</i> isolates	67
2. Antibiogram analysis of <i>C. albicans</i> isolates against some antifungal agents	69
3. Assessment of virulence factors production on the phenotypic level.	72
4. Evaluation of potential correlation between antifungal resistance and virulence factors.	79
5. Effect of sub-inhibitory antifungal concentrations on some virulence factors production	83
DISCUSSION	87
1. Identification of <i>Candida</i> spp. and selection of <i>C. albicans</i> isolates	89
2. Antibiogram analysis of <i>C. albicans</i> isolates against some antifungal agents	89
3. Assessment of virulence factors production on the phenotypic level	92
4. Evaluation of potential correlation between antifungal resistance and virulence factors	94
5. Effect of sub-inhibitory antifungal concentrations on some virulence factors production	96
SUMMARY	100
RECOMENNDATIONS	102
REFERENCES	103
، الع بـ / الع	ملخص

MSc thesis 2018 Page IV

LIST OF ABBREVIATIONS

5- FC 5- Flucytosine

ABC ATP-binding cassette

Als Agglutinin- like sequence

AMB Amphotericin B

ATCC American Type Culture Collection

BG β -Glucan

BMD Broth microdilution

BSA Bovine serum albumin

C. albicans Candida albicans

C. glabrata Candida glabrata

C. krusei Candida krusei

C. parapsilosis Candida parapsilosis

C. tropicalis Candida tropicalis

CDR *Candida* drug resistance

CLSI Clinical and laboratory standards institute

CLT Clotrimazole

Co. Company

CSH Cell surface hydrophobicity

DD Disk diffusion

DMSO Di methyl sulfoxide

ECM Extracellular matrix

ELISA Enzyme- linked immunosorbent assay

MSc thesis 2018 Page V

Eno1p Enolase1

ESCMID The European Society of Clinical Microbiology and Infectious Diseases

EUCAST European Committee on Antimicrobial Susceptibility Testing

FLU Fluconazole

g Gravity

h hours

Hsp Heat shock protein

Hwp1 Hyphal wall protein1

Hz Haemolysin index

I Intermediate

Ig Immunoglobulin

LIP Lipase

MALDI - TOF Matrix-assisted laser desorption/ionization-time of flight mass

MS spectrometry

MATH Microbial adhesion to hydrocarbons

MCF Micafungin

MDR Multidrug resistance

MFS Major facilitator superfamily

MICs Minimum inhibitory concentrations

Mn/A-Mn Mannan Ag/anti-mannan Ab

MOPS Morpholinepropanesulfonic acid

NYS Nystatin

OD Optical Density

ODc OD cut-off value

PBS Phosphate buffered saline

PCR Polymerase Chain Reaction

MSc thesis 2018 Page VI

PL Phospholipase

Prz Protease index

Pz Phospholipase index

R Resistant

RNS Reactive nitrogen species

ROS Reactive oxygen species

RPMI Roswell Park memorial Institute

Saps Secreted aspartyl proteases

spp. Species

r_s Spearman correlation coefficient

RTqPCR Real-time reverse transcriptase quantitative PCR

Sensitive/ Susceptible

SDA Sabouraud's dextrose agar

SDB Sabouraud's dextrose broth

SDD Susceptible dose- dependent

SEM Scanning electron microscopy

SOD Superoxide dismutase

TCA Trichloro acetic acid

UK United Kingdom

USA United states of America

VOR Voriconazole

YEPD Yeast extract peptone dextrose

+ve Positive

-ve Negative

°C Degree Celsius

MSc thesis 2018 Page VII

LIST OF FIGURES

Figure 1: Images of Candida albicans cells as visualized by phase contrast microscopy	7
Figure 2: Structure of the <i>C. albicans</i> cell wall	8
Figure 3: An overview of selected virulence factors contributing to <i>C. albicans</i> pathogenicity	12
Figure 4: Steps of <i>C. albicans</i> tissue invasion.	15
Figure 5: Scanning electron microscopy of <i>C. albicans</i> biofilm	17
Figure 6: Gram staining of Candida albicans in sputum specimen	23
Figure 7: Colonies of Candida on SDA	24
Figure 8: Differentiation of various species of <i>Candida</i> on CHROM agar	25
Figure 9: Candida albicans chlamydospores on Corn meal agar	25
Figure 10: Positive germ tube positive test of Candida albicans	26
Figure 11: Targets for antifungal drug therapy	31
Figure 12: Candida species mechanisms of resistance to different antifungal classes	35
Figure 13: Schematic overview of fungal biofilm resistance mechanisms	39
Figure 14: Identification of <i>Candida albicans</i> by the germ tube method	67
Figure 15: Identification of Candida albicans on Candida chromogenic agar	68
Figure 16: Percentage production of phospholipase by <i>C. albicans</i> isolates across different sources group	72

MSc thesis 2018 Page VIII

Figure 17: Percentage production of aspartyl protease by <i>C. albicans</i> isolates across different sources group	73
Figure 18: Percentage production of haemolysin by <i>C. albicans</i> isolates across different sources group.	74
Figure 19: Percentage cell surface hydrophobicity of <i>C. albicans</i> isolates across different sources groups	75
Figure 20: Percentage biofilm production by <i>C. albicans</i> isolates across different sources groups	76
Figure 21: Percentage production of virulence factors as per source of clinical specimens in C. albicans	77
Figure 22: Correlations between FLU MICs and (a) aspartyl protease, (b) CSH and (c) biofilm in <i>C. albicans</i> isolates	80
Figure 23: Correlations between VOR MICs and (a) aspartyl protease and (b) CSH in <i>C. albicans</i> isolates	81
Figure 24: Correlations between biofilm formation and (a) phospholipase and (b) CSH in <i>C. albicans</i> isolates	82
Figure 25: Scanning electron micrograph for the untreated (control) and antifungal-treated <i>C. albicans</i> isolate	85
Figure 26: Scanning electron micrograph for the nystatin-treated <i>C. albicans</i> isolate showing ghost-like cells.	86

MSc thesis 2018 Page IX

LIST OF TABLES

Table 1. Summary of Candida diseases, specimens and evaluated tests	22
Table 2. Interpretation of sugar assimilation test of Candida species	27
Table 3. Different chemicals used in the present study and their sources	47
Table 4. Different instruments and other materials used in the present study and their sources.	49
Table 5. The ready-made media used in the present study and their sources	52
Table 6. Interpretation criteria and results of antifungal susceptibility testing of C. albicans by disk diffusion method.	69
Table 7. Interpretation criteria and results of antifungal susceptibility testing of <i>C. albicans</i> by broth microdilution method.	70
Table 8. Comparison of median antifungal MICs across different C. albicans clinical specimen sources.	71
Table 9. Levels of phospholipase activity (mm) exhibited by C. albicans clinical isolates	72
Table 10. Levels of aspartyl protease activity (mm) exhibited by C. albicans clinical isolates	73
Table 11. Levels of haemolysin activity (mm) exhibited by C. albicans clinical isolates	74
Table 12. Levels of cell surface hydrophobicity (CSH) of C. albicans clinical isolates.	75
Table 13. Classification of C. albicans isolates based on their biofilm formation capacities	76
Table 14. Comparison of median values of virulence factors across C. albicans clinical specimen sources.	78
Table 15. Correlation coefficients (r _s) between virulence factors and antifungal MICs in <i>Candida albicans</i> clinical isolates.	79
Table 16. Variations in extracellular hydrolytic activities and biofilm formation in <i>Candida albicans</i> isolates exposed to antifungal sub-MICs	84

MSc thesis 2018 Page X

ABSTRACT

Background: *Candida albicans* remains the most frequent pathogen of nosocomial fungal infections due to several virulence determinants involved in its pathogenesis. Moreover, antifungal resistance has increased dramatically, narrowing the few available therapeutic options due to their potential toxicity. Nevertheless, correlation between resistance profiles and virulence patterns of *C. albicans* is not very well- investigated, in addition to the impact of antifungal therapy on such virulence attributes.

Objectives: Based on this information, the present study was carried out to explore the potential associations between resistance profiles and virulence patterns of *C. albicans* clinical isolates, as well as their potential correlation with the source of clinical specimens. Moreover, this study addressed the effect of subinhibitory concentrations of selected antifungal agents on some virulence factors of *C. albicans* clinical isolates, since common antifungal agents may disturb the production of secreted hydrolases as well as biofilm formation.

Methods: Candida spp. isolates (n= 107) were recovered from different clinical specimens (vaginal swabs, urine, sputum and others) and identified to the species level using standard phenotypic methods. Antifungal susceptibilities of isolates were performed against amphotericin B, nystatin, clotrimazole, fluconazole, voriconazole, and micafungin according to Clinical and Laboratory Standards Institute M27-A3guidelines. Virulence patterns including secreted hydrolases: (phospholipase, aspartyl protease, and haemolysin), cell surface hydrophobicity and biofilm formation were evaluated. Correlations between resistance profiles and virulence patterns of tested *C. albicans* isolates, in addition to their potential association with the source of clinical specimens were analyzed. Phenotypic virulence patterns including secreted hydrolases (phospholipase, aspartyl protease and haemolysin) and biofilm formation were evaluated in the presence of subinhibitory concentrations of nystatin, fluconazole and micafungin.

MSc thesis 2018 Page 1

Results: Ninety isolates (84%) of the *Candida* spp. collected were confirmed to be *C. albicans*. All tested *C. albicans* isolates (100%) were sensitive to amphotericin B and nystatin and 98.9% of them were micafungin susceptible. On the other hand, high resistance rates were detected against clotrimazole, fluconazole and voriconazole as estimated to be 87.8, 95.6 and 93.3%, respectively. Phospholipase, aspartyl protease, and haemolysin activities were detected in almost 58, 57 and 100% of the tested isolates, respectively. Moreover, *C. albicans* isolates recovered from urine samples showed the highest phospholipase and aspartyl protease production in comparison to other groups. Haemolytic activity was evident in all tested isolates regardless of the clinical specimen source. Cell surface hydrophobicity and biofilm formation were shown in approximately 13 and 11% of the isolates, respectively. *C. albicans* isolates recovered from the miscellaneous followed by sputum groups showed the highest hydrophobicity levels as well as biofilm forming capacities as compared to other groups.

There are significant (p < 0.05) negative correlations between fluconazole resistance and aspartyl protease, cell surface hydrophobicity and biofilm formation. Moreover, there are significant (p < 0.05) negative correlations between voriconazole resistance and aspartyl protease as well as cell surface hydrophobicity. In addition, source of clinical isolates showed significant (p < 0.05) influence on some resistance and virulence patterns. Nystatin and clotrimazole resistance profiles are significantly (p < 0.05) different across different sources groups with the highest resistance rates detected in C. albicans isolates recovered from sputum, as compared to the other source groups. In addition, aspartyl protease activity is significantly (p < 0.05) different across different sources groups with C. albicans isolates recovered from urine samples having the highest levels of aspartyl protease production as compared to the other source groups.

Furthermore, treatment of clinical C. albicans isolates with subinhibitory nystatin, fluconazole and micafungin concentrations significantly (p < 0.05) decreased production of extracellular hydrolases. Nystatin had the greatest effect on suppressing phospholipase and aspartyl protease activities. However, micafungin showed the highest effect on decreasing the hemolytic activity of treated clinical isolates. Moreover, nystatin and micafungin, but not fluconazole, had a significant (p < 0.05) impact on inhibiting biofilm formation of C. albicans clinical isolates.

MSc thesis 2018 Page 2