Acknowledgments

First of all, I thank *GOD* for helping and guiding me to accomplish this work.

I would like to express my thanks and gratitude to *Professor Dr. Osama Abdelkader Salem*, Professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his help and valuable comments.

I would also like to express my thanks and deep appreciation to *Professor Dr. Tamer Mohamed El-Raggal*, professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his helpful advice, continuous guidance and support.

I would also like to thank *Professor Dr. Mohamed Gamil Metwally*, professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his help and effort.

Finally, I would like to thank my family for their caring and support.

Comparative Study between Femtosecond Laser Assisted in-situ Keratomileusis and Femtosecond Small Incision Lenticule Extraction for Correction of Myopia and Myopic Astigmatism

Thesis

Submitted for partial fulfillment of MD degree in Ophthalmology by

Ahmed Abdelmajeed Abutaleb

M.B., B.Ch, M.Sc. Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Osama Abdelkader Salem

Professor of Ophthalmology
Faculty of Medicine, Ain Shams University

Prof. Dr. Tamer Mohamed El-Raggal

Professor of Ophthalmology
Faculty of Medicine, Ain Shams University

Prof. Dr. Mohamed Gamil Metwally

Professor of Ophthalmology
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo, Egypt
2018

دراسة مقارنة بين جراحة الليزك المساعد بليزر الفيمتو ثانية وجراحة استخراج عديسة من القرنية عبر جرح صغير لتصحيح قصر النظر واللا بؤرية المصاحبة لقصر النظر

رسالة توطئة للحصول على درجة الدكتوراه في طب وجراحة العيون

مقدمة من

أحمد عبد المجيد أبو طالب

بكالوريوس الطب والجراحة - ماجستير طب وجراحة العيون كلية الطب - جامعة عين شمس

تحت إشراف

أ.د. أسامة عبد القادر سالم

أستاذ طب وجراحة العيون كلية الطب - جامعة عين شمس

أ.د. تامر محد الرجال

أستاذ طب وجراحة العيون كلبة الطب - جامعة عين شمس

أ.د. محد جميل متولى

أستاذ طب وجراحة العيون كلية الطب - جامعة عين شمس

كلية الطب - جامعة عين شمس القاهرة - مصر ٢٠١٨

Contents

Contents:	i
List of Abbreviations	ii
List of Figures	iii
List of Tables	ix
Protocol	
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter One: FS-LASIK	4
Chapter Two: SMILE	18
Patients and Methods	27
Results	49
<u>Discussion</u>	91
Conclusion	107
Summary	108
References	111
Arabic Summary الملخص العربي	١

List of Abbreviations

Best Corrected Visual Acuity	BCVA
Balanced Salt Solution	BSS
Centimeter	ст
Corneal Hysteresis	СН
Corneal Resistance Factor	CRF
Diopter	D
Diffuse Lamellar Keratitis	DLK
Femtosecond Lenticule Extraction	FLEx
Femtosecond	FS
Kilo-Hertz	kHz
Laser-Assisted In Situ Keratomileusis	LASIK
Millimeter	mm
Millimeter of Mercury	ттНд
Nano-Joule	nJ
Ocular Response Analyzer	ORA
Photo-Refractive Keratectomy	PRK
Refractive Lenticule Extraction	ReLEx
Small Incision Lenticule Extraction	SMILE
Standard Deviation	SD
Tear Breakup Time	TBUT
Uncorrected Visual Acuity	UCVA

<u>List of Figures</u>

Figure	Figure Description	Page
	Schematic diagram of LASIK flap creation	
1	with raster pattern, while cornea is flattened	6
	by applanation cone	
2	Opaque bubble layer during femto-LASIK	10
	flap creation	
	Cavitation gas may occasionally enter	
3	posterior stroma, subepithelial space and	11
	anterior chamber	
	Slitlamp documentation of severe punctate	
4	epithelial erosions in the cornea of an eye	15
	that developed LASIK induced neurotrophic	
	epitheliopathy 1 week after surgery	
5	Schematic drawing of femto-LASIK and	19
	SMILE procedures	
	Incision geometry and ranges for surgical	
6	parameters of small-incision lenticule-	20
	extraction surgery	
7	Corneal nerves in LASIK (A) and SMILE	22
	(B)	
	Comparison of LASIK flap (A) and SMILE	
8	cap (B). The anterior stroma is relatively	26
	stronger in SMILE	

	A. The WaveLight [®] FS200 Femtosecond	
9	Laser System	28
	B. The WaveLight® EX500 Excimer Laser	
	System	
10	The Visumax® Femtosecond Laser Platform	28
11	Tear breakup time test	31
12	Schirmer test	32
13	Cochet-Bonnet aesthesiometer	33
14	The Ocular Response Analyzer®	34
15	Drying of the ocular surface using microsponges	37
16	The suction ring application for eye fixation	37
_	The flat bottom of the applanation cone was	
17	used as an applanation plate for the patient's	38
	cornea	
18	Docking and applanaion of the cornea	38
19	Canal creation for collecting air bubbles out	38
	of the cornea	
20	Laser application to create the corneal flap	39
	and the side cut	
21	Flap gentle dissection from the corneal	39
	stromal bed	
22	The flap was gently raised	39
23	A microsponge used for protecting the flap	40
	during the excimer laser application	
24	Irrigation of the corneal stromal bed with	40
	Balanced Salt Solution	

25	The flap was floated back into position with	40
	a cannula	
26	Drying the corneal surface using disposable	41
	microsponges	
27	The patient was raised to the contact glass of	43
	the curved cone	
	Creation of the lower interface of the	
28	intrastromal lenticule using an out-to-in	43
	direction	
29	Creation of the lenticule side cut	44
30	Creation of the upper interface of the	44
	lenticule then using an in-to-out direction	
31	Creation of the superior incision	44
32	Opening of the small incision	45
33	Dissection of the upper interface using	45
	circular blunt dissector	
34	Dissection of the lower interface using blunt	45
	spatula	
35	Removal of the lenticule from the cornea	46
	using micro-forceps	
36	Wash of the interface with Balanced Salt	46
	Solution	
37	Drying the corneal surface using disposable	46
	microsponges	
38	Comparison between the two groups	50
	regarding the age distribution	
39	Comparison between the two groups	51
	regarding the gender distribution	

40	Comparison between preoperative uncorrected visual acuity and postoperative uncorrected visual acuity at 1 st month, 3 rd month and 6 th month in group A	52
41	Comparison between preoperative best corrected visual acuity and postoperative best corrected visual acuity at 1 st month, 3 rd month and 6 th month in group A	53
	0 1	
42	Comparison between preoperative spherical equivalent and postoperative spherical equivalent at 1 st month, 3 rd month and 6 th month in group A	54
	Comparison between preoperative spherical	
43	error and postoperative spherical error at 1 st month, 3 rd month and 6 th month in group A	55
44	Comparison between preoperative cylindrical error and postoperative cylindrical error at 1 st month, 3 rd month and 6 th month in group A	56
45	Comparison between preoperative tear breakup time and postoperative tear breakup time at 1 st month, 3 rd month and 6 th month in group A	57
46	Comparison between preoperative Schirmer test and postoperative Schirmer test at 1 st month, 3 rd month and 6 th month in group A	58
47	Comparison between preoperative corneal sensation and postoperative corneal sensation at 1 st month, 3 rd month and 6 th month in group A	59

48	Comparison between preoperative corneal hysteresis and postoperative corneal hysteresis at 6 th month in group A	60
49	Comparison between preoperative corneal resistance factor and postoperative corneal resistance factor at 6 th month in group A	61
50	Comparison between preoperative uncorrected visual acuity and postoperative uncorrected visual acuity at 1 st month, 3 rd month and 6 th month in group B	62
51	Comparison between preoperative uncorrected visual acuity and postoperative uncorrected visual acuity at 1 st month, 3 rd month and 6 th month in group B	63
52	Comparison between preoperative spherical equivalent and postoperative spherical equivalent at 1 st month, 3 rd month and 6 th month in group B	64
53	Comparison between preoperative spherical error and postoperative spherical error at 1 st month, 3 rd month and 6 th month in group B	65
54	Comparison between preoperative cylindrical error and postoperative cylindrical error at 1 st month, 3 rd month and 6 th month in group B	66
55	Comparison between preoperative tear breakup time and postoperative tear breakup time at 1 st month, 3 rd month and 6 th month in group B	67

1	·	
	Comparison between preoperative Schirmer	
56	test and postoperative Schirmer test at 1 st	68
	month, 3 rd month and 6 th month in group B	
	Comparison between preoperative corneal	
57	sensation and postoperative corneal	69
	sensation at 1 st month, 3 rd month and 6 th	
	month in group B	
	Comparison between preoperative corneal	
58	hysteresis and postoperative corneal	70
	hysteresis at 6 th month in group B	
	Comparison between preoperative corneal	
59	resistance factor and postoperative corneal	71
	resistance factor at 6 th month in group B	
60	Comparison between the two groups	76
	regarding cylindrical error at first month	
61	Comparison between the two groups	77
	regarding tear breakup time at first month	
62	Comparison between the two groups	78
	regarding corneal sensation at first month	
63	Comparison between the two groups	80
	regarding cylindrical error at third month	
64	Comparison between the two groups	82
	regarding corneal sensation at third month	
65	Comparison between the two groups	84
	regarding cylindrical error at sixth month	
66	Comparison between the two groups	86
	regarding corneal hysteresis at sixth month	
	Comparison between the two groups	
67	regarding corneal resistance factor at sixth	87
	month	
L	-	