IMPROVING PROPERTIES OF SOME BOTANICAL PRODUCTS USING DIFFERENT NANOTECHNOLOGICAL METHODS FOR CONTROLLING TWO LEPIDOPTEROUS PESTS

By DALIA ABD ALLAH YOUSSEF TAHA

B.Sc.Agric.Sc.(Economic Entomology), Cairo Univ.(1998) M.Sc.Agric.Sc.(Economic Entomology), Cairo Univ. (2004)

> A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

in Agricultural Sciences (Economic Entomology)

Department of Plant Protection Faculty of Agriculture Ain Shams University

IMPROVING PROPERTIES OF SOME BOTANICAL PRODUCTS USING DIFFERENT NANO-TECHNOLOGICAL METHODS FOR CONTROLLING TWO LEPIDOPTEROUS PESTS

DALIA ABD ALLAH YOUSSEF TAHA

B.Sc.Agric.Sc.(Economic Entomology), Cairo Univ.(1998) M.Sc.Agric.Sc.(Economic Entomology), Cairo Univ. (2004)

Under the supervision of:

Dr. Abd Elrahman Hussein Mohamed Amin

Prof. Emeritus of Economic Entomology, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Alaa Eldin Bayoumi Abd Elkhalek

Prof. of Pesticides Chemistry and Toxicology, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University.

Dr. Nadia Zikry Dimetry

Prof. Researcher Emeritus of Economic Entomology, Dept. of Pests and Plant Protection, National Research Centre.

ABSTRACT

Two plant products, *i.e.* neem (*Azadirachta indica* A. Juss) extract and peppermint (*Mentha pipreta*) oil were selected in this study to evaluate the efficiency of their three different formulations, *i.e.* bulk, nano-emulsion and loaded nano-emulsion against 2^{nd} and 4^{th} instar larvae of two lepidopterous insect pests, *i.e.* the cotton leafworm, *Spodoptera littoralis* (Boisd.) and the black cutworm, *Agrotis ipsilon* (Hufn.). The evaluation process included investigation the efficacy of the prepared nano formulations against the two larval instars of both species and the effect of the same formulations on some biochemical parameters in the treated insects, *i.e.* α -amylase, invertase, trehalase, protease, alkaline phosphatase, phenoloxidae and chitinase. Also, the effects of such formulations on some bionomics were also studied. In addition, the toxic effect of neem nano formulations on albino mice as mammalian model was included in this work.

At the beginning, the characterization of the obtained nanoformulations, i.e. nano-emulsion and loaded nano-emulsion using Transmission Electron Microscopy (TEM), UV spectrophotometric examination and Fourier Transforms Infrared (FTIR) showed that the nano-emulsion particles ranged between 20-90nm. The loading capacity percentages exhibited that distilled H₂O was more suitable than ethanol in preparation of nano-emulsion particles. The bioassay study to measure the efficiency of the tested formulations showed that the 2nd instar larvae was always more susceptible than the 4th instar larvae against the tested formulations. For example, LC₅₀s on 2nd instar larvae of S. littoralis for peppermint oil were 70.59, 12.23 and 21.72 ppm for bulk peppermint oil, peppermint nano-emulsion and loaded nano-emulsion, respectively. While on 4th instar these values were 80.47, 26.14 and 67.69 ppm, respectively. Toxicity index and relative potency proved that nanoemulsion was more effective than loaded nano-emulsion, while the bulk preparation was the least effective one. Results of enzymatic activities

showed significant inhibition of the tested enzymes except phenoloxidase and some treatment of chitinase in the 2nd instar larvae of the two selected insect pests. Furthermore, effects of adding the three formulations to artificial diet of 2nd instar of the two selected insects showed significant effects of the insect bionomics. Larval durations, percentage mortalities, were increased as well as larval malformations. Also, pupal duration, percentage pupal mortality and pupal malformation were increased, while pupal weight was decreased. Adult's longevity showed insignificant effects, while female fecundity and egg % fertility showed significant response.

Results of the toxic effect of the three tested formulations of neem extract on the albino mice clearly showed that the determined acute oral LD₅₀, values were 113.33, 134.83 and 140.90 mg/kg for loaded nanoemulsion, nano-emulsion and bulk neem extract, respectively which indicate that the nano formulations was more toxic than the bulk one. In addition, the sub-acute administration of sub-lethal dose (LD₁₀) during 14 days showed significant alterations between induction and/or reduction in the selected biomarkers, *i.e.* hematological toxicity (Hemoglobin, RBCs, WBCs), hepatotoxicity (AST, ALT, Glutathione S-transferase, Reduced glutathione and Bilirubin), nephrotoxicity (Creatinine) and total ATPases.

As general conclusion, the nano-fomulation exhibited more efficiency against the targeted insect pests at biological and biochemical levels while caused serious toxic effect on the utilized mammalian model which indicate the necessary to perform more toxicological studies, *i.e.* chronic and/or long term toxicity studies.

Keywords: Azadirachta indica, Mentha pipreta, Neem oil, Agrotis ipsilon, Spodoptera littoralis, Nanotechnology, Enzyme activities, Toxicity, Biology.

ACKNOWLEDGMENT

Thanks and indebtedness is directed first and always to **ALLAH** for everything, without the power giving me, the accomplishment of this work would have been certainly impossible.

Authoress would like to express her profound gratitude to Prof. Dr. Abd Elrahman Hussein Mohamed Amin Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University and Prof. Dr. Nadia Zikry Dimetry Prof. of Economic entomology, Department of Pests and Plant Protection, National Research Centre for suggesting the problem, their supervision, encouragement, considerable advice and guidance during this work. For all their help and kindness, I sincerely thank them from the bottom of my heart.

I am thankful indeed to Prof. Dr. Alaa Eldin Bayoumi Abd Elkhalek Prof. of Pesticide Chemistry and Toxicology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University for his great effort, valuable help in performing this work. Continuous encouragement and support until this work was completed.

It is great pleasure to express my deep thanks and sincere gratitude to **Prof. Dr. Esam Mohamed Hoballah**, Department of Environmental Microbiology, National Research Centre for having welcomed me into his laboratory, for his able guidance and for being a steady source of encouragement at all times, which led me to complete this work.

I sincerely thank **Dr. Mohamed Abdel-Raheem Ali Abdel-Raheem** Associate Prof. of Entomology (Biological Control), Department of Pests and Plant Protection, National Research Centre for his kindness, efforts and providing me with many tools to go on in my work.

I am grateful to **Prof. Dr. Ahmed Mohamed Ezzat Abd Elsalam Ayoub** Head of Department of Pests and Plant Protection, National Research Centre for providing our study with neem oil.

I am greatly indebted to **Prof. Dr. Soad Mohamed El-Ashr**y, Department of Soils and Water Use, National Research Centre and **Prof. Dr. Nabil A. Abdel Ghany** Department of Physical Chemistry, National Research Centre for welcoming me in their laboratory and letting me use their devices.

I am also deeply thankful to staff members of Department of Plant Protection, faculty of Agriculture, Ain Shams University and all my colleagues of Department of Pests and Plant Protection, National Research Centre for their technical assistance, kind help and support they offered to me during all stages of conducting this work.

The facilities provided by the National Research Centre are greatly appreciated. Also, I am deeply thankful to my family for their supporting and helping me during the whole period of the study.

CONTENTS

	Page
ACKNOWLEDGMENT	I
LIST OF TABLES	VI
LIST OF FIGURES	IX
INTRODUCTION	1
REVIEW OF LITERATURE	6
1. Lepidopterous insect pests	6
1.1.The cotton leafworm <i>Spodoptera littoralis</i> (Boisd.)	6
1.2. Black Cutworm Agrotis ipsilon (Hufn.)	7
2. Backhistory of the control of the lepidopterous insects	8
2.1. Plant extracts as biological control agents	8
2.2. History of using plant extracts as pesticidal agents	10
2.2.1. Neem oil	12
2.2.2. Essential oils	15
3. Nanotechnology in pest control	17
3.1. Advantages of nano-technology	17
3.2. Encapsulation and control releasing formulation of bio-	
pesticides	20
3.3. Polymer-based nano-delivery systems	24
3.4. Characterization	28
3.4.1. Morphological Characterization (Electron Microscopy)	28
3.4.2. Fourier-Transform Infrared Spectroscopy (FTIR)	30
3.4.3. Ultraviolet Spectrophotometer (UV)	31
4. Biochemical and physiological effects of botanical	
extracts	31
5. Effect of neem and peppermint oil on some bionomics of	
Spodoptera littoralis and Agrotis ipsilon	35
6. Toxicity of Nano-products	39
6.1. Important considerations for toxicity testing	40
6.2. In vivo toxicity	41

	Page
6.2.1. Acute toxicity	41
6.2.2. Chronic toxicity	42
6.2.3. Long term toxicity	44
MATERIAL AND METHODS	46
1. Test insects	46
1.1. Rearing and maintaining of <i>Spodoptera littoralis</i>	46
1.2. Rearing and maintaining of Agrotisipsilon	46
2. Tested plant extract and essential oil	47
2.1. Screening tests of essential oils against S. littoralis and A.	
ipsilon	47
3. Preparation of nano-formulations	48
3.1. Nano-emulsion preparation	48
3.2. Preparation of loaded nano-emulsions	49
4. Characterization of nano-formulations	50
4.1. Transmission Electron Microscopy (TEM)	50
4.2. UV spectrophotometric examinations	50
4.3. Fourier Transforms Infrared (FTIR) measurements	51
5. Bioassay tests	50
6. Effect of the tested nano and bulk formulations of neem	
and peppermint oils on certain enzymatic activities	53
6.1. Preparation of enzyme extracts	53
6.2. Determination of total proteins	54
6.3. Determination of carbohydrate hydrolyzing enzymes activities	55
6.4. Preparation of dinitrosalicylic acid reagent	56
6.5. Preparation of standard calibration curve of glucose	56
6.6. Determination of Protease activity	57
6.7. Determination of alkaline phosphatase activities	57
6.7.1. Preparation of Phenol standard calibration curve	58
6.9. Determination of Chitinase activity	59
6.10. Determination of Phenoloxidase activity	60