

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL DEPARTMENT

BEHAVIOR OF BEAM-COLUMN JOINTS WITH DIFFERENT BEAM-COLUMN CONCRETE STRENGTHS

BY

Ayman Osama Abd EL-Wahab El-Nattar

BSc (honours) 2013, MSc 2018, Structural Division, Structural Engineering Dept. Ain Shams University

A Thesis SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING (STRUCTURAL)

SUPERVISED BY

Dr. Ayman Hussein Hosny Khalil.

Professor of Concrete Structures, Structural Engineering Department Faculty of Engineering, Ain Shams University

Dr. Ayman Sayed Abou Beah.

Assistant Professor, Structural Engineering Department Faculty of Engineering, Ain Shams University

Cairo - 2018

Ain Shams University Faculty of Engineering

APPROVAL SHEET

Thesis	: Master	of Science	in C	ivil En	gineering	(Structural)
						(

Student Name: Ayman Osama Abd EL-Wahab El-Nattar

Thesis Title : BEHAVIOR OF BEAM-COLUMN JOINTS WITH

DIFFERENT BEAM-COLUMN CONCRETE STRENGTHS

Examining Committee:-	<u>Signature</u>
Prof .Dr / Hatem Mostafa Mohamed Ahmed Prof .of RC. Structures, Faculty of Engineering CairoUniversity	
Prof .Dr / Omar Ali Mousa El-Nawawy Prof .of RC. Structures, Faculty of Engineering Ain Shams University	
Prof .Dr / Ayman Hussein Hosny Khalil Prof .of RC. Structures, Faculty of Engineering Ain Shams University	

Date: 31 - 10 - 2018

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, for the Degree of Master of Science in Civil Engineering (Structural).

No part of this thesis has been submitted for a degree or qualification at any other University or Institute.

Date : / /2018

Name : Ayman Osama El-Nattar

Signature:

AIN SHAMES UNIVERSITY FACULTY OF ENGINEERING STRUCTURE ENGINEERING DEPARTMENT

Abstract of the MSc thesis submitted by Eng. Ayman Osama Abd El-wahab El-Nattar

<u>Title of thesis</u>: "BEHAVIOR OF BEAM-COLUMN JOINTS WITH DIFFERENT BEAM-COLUMN CONCRETE STRENGTHS"

SUPERVISORS:

PROF. DR \ AYMAN HUSSEIN HOSNY KHALIL DR \ AYMAN SAYED ABOU BEAH

ABSTRACT

In high-rise buildings and heavy loaded structures where RC columns are subjected to heavy loads, High Strength Concrete (HSC) used in column construction is essential for the purpose of reducing column size and increasing column capacity. However, from the economical standpoint, combination of high and normal strength concrete (NSC) in building construction is becoming common practice, where HSC is used for columns and NSC is used for the surrounding beams/slabs floor system. This creates a situation where concrete strength of the column portion at the beam/slab floor level is lower than concrete strength used for rest of the column. Previous studies indicated that such variation in concrete strength affects the load carrying capacity of the RC columns.

A beam-column joint is a very critical zone in reinforced concrete framed structure where the elements intersect in all three directions. Joints ensure continuity of a structure and transfer forces that are present at the ends of the members. In reinforced concrete structures, failure in a beam often occurs at the beam-column joint making the joint one of the most critical sections of the structure. Sudden change in geometry and complexity of stress distribution at joint are the reasons for their critical behavior. In recent years, the design of joints in reinforced concrete structures was generally limited to satisfying anchorage requirements. In recent decades, the behavior of joints was found to be dependent on a number of factors related with their geometry; amount and detailing of reinforcement, concrete strength and loading pattern.

The casting of the beams and slabs at a particular floor level is carried out together with the beam-column connection zone using the same grade of concrete. In the case of the columns designed with markedly higher concrete strength compared to that of the beams, such casting sequence forms beam-column connection zones with significantly lower concrete strength than in the upper and lower columns. When the connection zone is subjected to large shear stresses as in the case of columns, the capacity of the columns might wrongly be assessed if it is based solely on their higher concrete strength. This research presents the results of tests on six beam-column specimens in which the influence of concrete strength in the connection zone, on the ultimate capacity of the joint was investigated. All specimens were provided with identical reinforcement in the beam and column portions.

This research studies structural behavior of the beam-column joints under failure loads having different values of concrete strength (fcu) for beam (NSC) and column (HSC). Two variables were considered including concrete strength and type of load.

Ultimate load and characteristics of the beam-column joints were experimentally investigated on six specimens. All specimens have height of

1300 mm with column heads of height 400 mm in the lower and upper part of column with cross section of column 150 x 250 mm. Also every specimen has one beam 800 mm long, 150 mm width & 250 mm depth framed at mid-height of a column and cast using concrete compressive strength of 38 N/mm². Concrete compressive strength of columns in six specimens (S1, S2, S3, S4, S5, and S6) was increased from 38 N/mm² to 94 N/mm² in order to increase the column load carrying capacity.

Using F.E package (ANSYS 14.0) their behaviour were investigated, analysed and verified. This Program has wide varieties of elements, a large library for material properties and several load types which covers almost aspects needed to model the experimental work conducted in this thesis.

The presented research introduces an experimental and analytical study in order to investigate the effect of concrete compressive strength between column (HSC) & beam (NSC) on the behaviour of beam- column joints. Experimentally, a total of six specimens were tested under (Concentric & Eccentricity at 5 cm) loads. All specimens were tested up to failure and the behaviour was fully monitored. Moreover, a nonlinear 3D- finite element analysis was established using (ANSYS 14.0) program and verified with the experimental results in order to give design recommendations for those structural elements. Test results showed a good match between both experimental tests and F.E models.

Key Words: Beam-column Joints, High concrete strength, Normal concrete strength, Concentric load, Eccentric load, Non-linear structural analysis.

ACKNOWLEDGEMENTS

First of all, I would like to express my great thanks to **Allah**, who gave me the strength, ability, and conciliation to achieve this work, wishing that my work would ever last to be beneficial materials to future researchers. I also wish to thank Allah again for his valuable gift, my great supervision committee, who strongly supported me to achieve this study.

The writer is deeply indebted to **Prof. Dr. Ayman Hussein Hosny Khalil,** Professor of RC structures Ain Shams University, for his kind and constant supervision, planning, guidance, valuable suggestions, precise advice and constant encouragement during all phases of this research work.

I would like to thank Associated **Dr. Ayman Sayed Abou Beah** for his valuable aid and advice throughout the research and I am also gratefully acknowledge the support & encouragement received from him.

I owe special thanks to the technicians at Concrete Laboratory for their assistance to complete my research. Also, I owe many thanks to all my colleagues who have helped & supported me throughout this research.

To my family members, "my Mother, my Father, and my Brothers" who have given unconditional support at home, with my family & research, I owe much debt of gratitude.

TABLE OF CONTENTS

				page
APPI	ROVAL	SHEET		i
NOT	TION (S	TATEME	NT)	ii
ABST	ΓRACT .			iii
ACK	NOWLE	DGMENT		vi
TABI	LE OF C	ONTENTS	S	vii
LIST	OF TAB	LES		xii
LIST	OF FIGU	JRES		xiv
LIST	OF SYM	BOLS		xxiii
Char	ter (1)	: INTRO	<u>DDUCTION</u>	
1.1	Genera	ıl	·····	1
1.2	Resear	ch Objecti	ves	3
1.3	Outline	es of Resea	arch	4
Char	ter (2)	: REVIE	W OF PREVIOUS WORKS	
2.1	Genera	1		7
2.2	Reinfo	rced Conc	rete	9
	2.2.1	Static of	Reinforced Concrete	9
		2.2.1.1	Elastic Behaviour	12
		2.2.1.2	Inelastic Behaviour	13
2.3	Beam -	- Column	Joints	13
	2.3.1	Classific	ation of Beam-Column Joints	14
	2.3.2	Forces A	Acting on Beam – Column Joints	17
		2.3.2.1	Forces in Joint Core	19
		2.3.2.2	Shear Requirements of Joint	21
		2.3.33	Shear Force in Interior Joint	21
	2.3.3	Forces T	ransfer Mechanisms in Beam-Column Joints	22
	2.3.4	Failure o	f Joint	26

	2.3.5	Effective Fa	ectors on Joint Behaviour	27
		2.3.5.1 Co	oncrete Strength	28
		2.3.5.2 Co	olumn Concrete Strength of Beam – Column Joint	29
		2.3.5.3 Re	einforcements	31
		2.3.5.4 Ty	pe of Anchorage	33
		2.3.5.5 Ax	xial Compression Load on Columns	34
		2.3.5.6 Но	orizontal Links	36
		2.3.5.7 Inc	clined Bars	37
2.4	Modell	ing and Analy	ysis of Structures Using the Finite Element Method	39
	2.4.1	Review of F	Finite Element Method (FEM)	40
<u>Char</u>	oter (3):	EXPERIM	MENTAL PROGRAM	
3.1	Genera	l		43
3.2	Testing	Program		44
3.3	Descrip	tion of Teste	d Specimen	44
3.4	Materia	l Properties .		51
	3.4.1	Concrete		51
		3.4.1.1 Co	oncrete Mixtures	51
		3.4.1.2 Str	rength of Concrete	53
	3.4.2	Reinforcing	Steel	54
3.5	Sample	Processing .		57
	3.5.1	Formworks	and Casting	57
	3.5.2	Instrumenta	tion and Control	60
	3.5.3	Testing Setu	ıp	63
Char	oter (4):	DISCUSSI EXAMINA	ION OF RESULTS OF EXPERIMENTAL ATION	
4.1	Genera	l		66
4.2	Failure	Mode Behav	iour & Ultimate Load of Specimens	66
	4.2.1	Specimen S	1	67

	4.2.2	Specimen S2	69
	4.2.3	Specimen S3	72
	4.2.4	Specimen S4	74
	4.2.5	Specimen S5	77
	4.2.6	Specimen S6	79
4.3	Discuss	sion and Evaluation of Specimen Results	82
	4.3.1	Specimen S1	85
	4.3.2	Specimen S2	88
	4.3.3	Specimen S3	91
	4.3.4	Specimen S4	94
	4.3.5	Specimen S5	97
	4.3.6	Specimen S6	100
4.4	Load st	rain relationship	101
	4.4.1	Load-beam deflection relationship of specimens (S1, S2, S3) & (S4, S5, S6)	101
	4.4.2	Load-concrete strain relationship for (S1, S2 and S3)	107
		4.4.2.1 Load-Lateral & Vertical concrete strain relationship for (S1, S2 and S3)	108
	4.4.3	Load-reinforcement strain relationship for (S1, S2 and S3)	114
	4.4.4	Load-concrete strain relationship	118
		4.4.4.1 Load-Lateral & Vertical concrete strain relationship	118
	4.4.5	Load-reinforcement strain relationship	124
4.5	Influen	ce of concrete strength	127
<u>Char</u>	oter (5):	THREE DIMENSIONAL MODELING AND ANALYSIS (ANSYS PROGRAM)	
5.1	Genera	1	128
5.2	ANSYS	S Overview	129
	5.2.1	Basic Analysis Procedures of ANSYS	130
	5.2.2	Structural Analyses of ANSYS	132
		5.2.2.1 Static Analysis	134
		5 2 2 2 Nonlinear Analysis	135

5.3	Descrip	otion of the Models	138
5.4	Three I	Dimensional Finite Elements Modelling of the Models	142
	5.4.1	Modelling Approach	143
	5.4.2	Generation of the Finite Element Model	144
		5.4.2.1 Definition of Element Types	144
		5.4.2.2 Definition of Element Real Constants	146
		5.4.2.3 Definition of Element Material Properties	147
<u>Chap</u>	oter (6):	: DISCUSSION OF RESULTS OF THEORTICAL ANALYSES (FINITE ELEMENT ANALYSES)	
6.1	Genera	1	152
6.2	Discuss	sion and Evaluation of 3-D Model Results	153
	6.2.1	Model S1	156
	6.2.2	Model S2	159
	6.2.3	Model S3	161
	6.2.4	Model S4	164
	6.2.5	Model S5	166
	6.2.6	Model S6	169
6.3		ce of concrete compressive strength of columns (Failure our of 3-D models)	171
	6.3.1	Concrete and steel reinforcement strains	171
	6.3.2	Beam deflection	180
	6.3.3	Crack pattern and mode of failure	183
6.4		ce of load eccentricity of columns (Failure Behaviour of 3-D	187
	6.4.1	Concrete and steel reinforcement strains	187
	6.4.2	Beam deflection	196
	6.4.3	Crack pattern and mode of failure	199
Chap	oter (7):	: COMPARTATIVE STUDY OF EXPERIMENTAL AND FINITE ELEMENT RESULTS	
7.1	Genera	1	203
7.2	Compa Verific	rison between Experimental & F.E. Results (ANSYS ation)	204

	7.2.1	Cracking and Failure Loads	204
	7.2.2	Beam deflection	205
	7.2.3	Steel reinforcement strains	208
	7.2.4	Lateral concrete strains	214
	7.2.5	Vertical concrete strains	218
7.3	Crack p	pattern and mode of failure	225
7.4	Analysi	is and Discussion of Beam – Column Joint Behaviour	232
Chap	oter (8):	CONCLUSIONS & RECOMMENDATIONS	
8.1	Genera	1	233
8.2	Conclu	sions	234
8.3	Recom	mendations for Future Researches	236
Refer	ences		239

LIST OF TABLES

Table		page
Chapter	(2): REVIEW OF PREVIOUS WORKS	
2.1	Mechanical properties of concrete and reinforcing steel bars	11
Chapter	(3): EXPERIMENTAL PROGRAM	
3.1	Description of the Tested Specimens.	45
3.2	Concrete Mixing proportions (kg)	52
3.3	Admixtures of concrete Mixtures.	52
3.4	Result of the control specimen.	54
3.5	Mechanical properties of steel reinforcement	56
Chapter	(4): DISCUSSION OF RESULTS OF EXPERIMENTAL EXAMINATION	
4.1	EXP. results summary	84
4.2	Ratios of differences among all specimens with respect to strength and failure loads	84
4.3	Ratios of differences of maximum beam deflections among all specimens	85
4.4	EXP. Beam Deflection Results	104
4.5	EXP. maximum strain values of concrete of all specimens	108
4.6	EXP. maximum strain values of reinforcement of all specimens	114
Chapter	(5): THREE DIMENSIONAL MODELING AND ANALYSIS (ANSYS PROGRAM)	
5.1	Load and concrete compressive strength of column & beam	138
5.2	List ANSYS finite element types used for model generation of the different materials of RC column & beam (concrete and steel reinforcement).	144
<u>Chapter</u>	(6): DISCUSSION OF RESULTS OF THEORTICAL ANALYS (FINITE ELEMENT ANALYSES)	SES
6.1	Summary of Finite Element Results	155
6.2	Ratios of differences among all models with respect to strength and failure loads	155
6.3	Ratios of differences of maximum beam deflections among all models	156

6.4	Maximum strain values of concrete of models (S1, S2 and S3)	174
6.5	Maximum strain values of steel reinforcement of models (S1, S2 and S3)	177
6.6	Deflection values of beam at failure of models (S1, S2 and S3)	181
6.7	Maximum strain values of concrete of models (S1, S2, S3, S4, S5 and S6)	190
6.8	Maximum strain values of steel reinforcement of all models	193
6.9	Deflection values of beam at failure of models (S1, S2, S3, S4, S5 and S6)	198
Chapter	r (7): COMPARTATIVE STUDY OF EXPERIMENTAL AND FINITE ELEMENT RESULTS	
7.1		
	Comparison between Experimental and Analytical First Cracking and Failure Loads	204
7.2	Comparison between Experimental and Analytical First Cracking	204205
	Comparison between Experimental and Analytical First Cracking and Failure Loads	
7.2	Comparison between Experimental and Analytical First Cracking and Failure Loads Deflection values of beam at failure of all models	205

LIST OF FIGURES

Figure		page
<u>Chapter</u>	(2): REVIEW OF PREVIOUS WORKS	
2.1	Short-term design stress-strain curve for normal-weight concrete	10
2.2	Short-term design stress-strain curve for reinforcement	10
2.3	Types of joints in frame	16
2.4	Typical frames with beam – column joints	17
2.5	 (a) Forces acting on the frame structure subjected to gravity loading (b) Moments at the internal joint (c) Moments at the external joint (a) Action forces on frame structure subjected to side force (from 	18
2.6	right to left):- (b) Moment at the internal joint (c) Moment at the external joint	18
2.7	Idealized load distribution in the vicinity of the beam-column joint: - (a) Loads imposed on the joint by the surrounding beams and columns, (b) Loads imposed on the joint core	23
2.8	Definition of horizontal joint shear in interior R/C beam-to-column joint	23
2.9	Horizontal shear force in an interior joint :- a) Typical frame with beam column joint b) Forces on the column c) Bending moment	24
2.10	d) Shear force Horizontal shear force in an exterior joint :- a) Forces on the column b) Bending moment c) Shear force	24
2.11	Forces Transfer Mechanisms in Beam–Column Joints :- (a) Concrete strut development (b) Compression zone development	25
2.12	Types of failure at beam-column joints	28
2.13	Moment and shear in column	32
2.14	Column load transmission through floor system :- (a) Modified casting method (b) The use of additional reinforcement in connection zone	32
2.15	Hook in an exterior joint	34
2.16	Shape of anchorage bars :- (a) Bent-up bars (b) Bent-down bars (c) U-bars	35
2.17	Effective ties in joint core	37
2.18	The position of inclined bars in connection zone	38