



### Platelet-Rich Plasma (PRP) Injection For Treatment Of Plantar Fasciitis

(Systematic review and Meta-analysis)

Submitted for partial fulfillment of master degree

By:

### Poula Rizk Saad Mina

M.BB.Ch
Faculty of medicine Tanta University

Under supervision of

### Professor Dr. Wael Ahmed Nassar

Professor of Orthopedic Surgery
Faculty of Medicine – Ain Shams University

### Dr. Ayman Fathy Mounir

Lecturer of Orthopedic Surgery
Faculty of Medicine – Ain Shams University

Faculty of medicine Ain shams university 2018

# Acknowledgment

First of **all**, all gratitude is due to God almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Wael Ahmed Nassar**, Professor of Orthopedic Surgery, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

Really I can hardly find the words to express my gratitude to **Dr**. **Ayman Fathy Mounir**, Lecturer of Orthopedic Surgery, Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

Last but not least, I dedicate this work to My Family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Poula Rizk Saad Mina

### Contents

| Títle                          | Page<br>No. |
|--------------------------------|-------------|
| List of Figures                | I           |
| List of Tables                 | IV          |
| Abbreviations                  | VI          |
| Introduction                   | 1           |
| Aim of the Work                | 4           |
| Review of Literature:          |             |
| • Anatomy                      | 5           |
| • Biomechanics                 | 12          |
| Diagnosis of Plantar Fasciitis | 17          |
| • Treatment                    | 20          |
| • PRP                          | 24          |
| Patients and Methods           | 42          |
| Meta Analysis                  | 76          |
| Result                         | 111         |
| Discussion                     | 119         |
| conclusion                     | 123         |
| References                     | 124         |
| Arabic Summary                 |             |

# List of Figures

| Figure      | Figure name                                     | nage  |
|-------------|-------------------------------------------------|-------|
| no.         | j igure rume                                    | page  |
| Fig. (1)    | Plantar Fascia                                  | 6     |
| Fig. (2)    | Muscle layers of the foot                       | 8     |
| Fig. (3)    | Innervation of the foot                         | 11    |
| Fig. (4)    | Arches of the foot                              | 14-15 |
| Fig. (5)    | Distribution of weight bearing                  | 15    |
| Fig. (6)    | The windlass mechanism                          | 16    |
| Fig. (7)    | Medial plantar region of the heel               | 18    |
| Fig. (8)    | Schematic illustration of the matrix and cell   | 29    |
|             | architecture of the four categories of platelet |       |
|             | concentrates                                    |       |
| Fig. (9)    | Flowchart describing preparation of PRP         | 31    |
| Fig. (10)   | Comparison of various protocols for platelet    | 40    |
|             | yield                                           |       |
| Fig. (11)   | Plantar fasciitis injection                     | 41    |
| Fig. (12)   | PRISMA 2009 Flow Diagram                        | 47    |
| Fig. (13-a) | Forest plot showing the difference between      | 78    |
|             | the PRP (intervention) and steroids (control)   |       |
|             | as regards the AFAS at baseline                 |       |
| Fig. (13-b) | Funnel plot depicting the standardised mean     | 79    |
|             | differences for the AFAS at baseline            |       |

| Fígure<br>no. | Fígure name                                   | page |
|---------------|-----------------------------------------------|------|
| Fig. (13-c)   | Precision plot depicting the standardised     | 80   |
|               | mean differences for the AFAS at baseline     |      |
| Fig. (14-a)   | Forest plot showing the difference between    | 83   |
|               | the PRP (intervention) and steroids           |      |
|               | (control) as regards the AFAS at 6 months     |      |
| Fig. (14-b)   | Funnel plot depicting the standardised mean   | 84   |
|               | differences for the AFAS at 6 months          |      |
| Fig. (14-c)   | Precision plot depicting the standardised     | 85   |
|               | mean differences for the AFAS at 6 months     |      |
| Fig. (15-a)   | Forest plot showing the difference between    | 88   |
|               | the PRP (intervention) and steroids (control) |      |
|               | as regards the FADI at baseline               |      |
| Fig. (15-b)   | Funnel plot depicting the standardised mean   | 89   |
|               | differences for the FADI at baseline          |      |
|               |                                               |      |
| Fig. (15-c)   | Precision plot depicting the standardised     | 90   |
|               | mean differences for the FADI at baseline     |      |
| Fig. (16-a)   | Forest plot showing the difference between    | 93   |
|               | the PRP (intervention) and steroids (control) |      |
|               | as regards the FADI at 3 months               |      |
| Fig. (16-b)   | Funnel plot depicting the standardised mean   | 94   |
|               | differences for the FADI at 3months           |      |
| Fig. (16-c)   | Precision plot depicting the standardised     | 95   |

| Fígure<br>no. | Fígure name                                   | page |
|---------------|-----------------------------------------------|------|
|               | mean differences for the FADI at 3 months     |      |
| Fig. (17-a)   | Forest plot showing the difference between    | 98   |
|               | the PRP (intervention) and steroids (control) |      |
|               | as regards the VAS at baseline                |      |
| Fig. (17-b)   | Funnel plot depicting the standardised mean   | 99   |
|               | differences for the VAS at baseline           |      |
| Fig. (17-c)   | Precision plot depicting the standardised     | 100  |
|               | mean differences for the VAS at baseline      |      |
| Fig. (18-a)   | Forest plot showing the difference between    | 103  |
|               | the PRP (intervention) and steroids (control) |      |
|               | as regards the VAS at 1 month                 |      |
| Fig. (18-b)   | Funnel plot depicting the standardised mean   | 104  |
|               | differences for the VAS at 1 months           |      |
| Fig. (18-c)   | Precision plot depicting the standardised     | 105  |
|               | mean differences for the VAS at 1 months      |      |
| Fig. (19-a)   | Forest plot showing the difference between    | 108  |
|               | the PRP (intervention) and steroids (control) |      |
|               | as regards the VAS at 6 months                |      |
| Fig. (19-b)   | Funnel plot depicting the standardised mean   | 109  |
|               | differences for the VAS at 6 months           |      |
| Fig. (19-c)   | Precision plot depicting the standardised     | 110  |
|               | mean differences for the VAS at 6 months      |      |

# List of Tables

| Table no. | Table name                                                                                     | page |
|-----------|------------------------------------------------------------------------------------------------|------|
| Table 1   | Differential Diagnosis of Heel Pain                                                            | 19   |
| Table 2   | Characteristics of papers studied cases                                                        | 48   |
| Table 3   | Demographic characteristics of included studies                                                | 70   |
| Table 4   | Study Techniques of PRP Group                                                                  | 71   |
| Table 5   | Study Techniques of Steroid Group                                                              | 73   |
| Table 6   | Results of the comparison of functional outcome                                                | 74   |
| Table 7-a | Difference between PRP (intervention) and steroids (control) as regarding the AFAS at baseline | 76   |
| Table 7-b | Tests of heterogeneity and publication bias as regarding the AFAS at baseline                  | 77   |
| Table 8-a | Difference between PRP (intervention) and steroids (control) as regarding the AFAS at 6 months | 81   |
| Table 8-b | Tests of heterogeneity and publication bias as regarding the AFAS at 6 months                  | 82   |
| Table 9-a | Difference between PRP (intervention) and steroids (control) as regarding the FADI at baseline | 86   |

| Table no.  | Table name                                    | page |
|------------|-----------------------------------------------|------|
| Table 9-b  | Tests of heterogeneity and publication bias   | 87   |
|            | as regarding the FADI at baseline             |      |
| Table 10-a | Difference between PRP (intervention) and     | 91   |
|            | steroids (control) as regarding the FADI at 3 |      |
|            | months                                        |      |
| Table 10-b | Tests of heterogeneity and publication bias   | 92   |
|            | as regarding the FADI at 3 month              |      |
| Table 11-a | Difference between PRP (intervention) and     | 96   |
|            | steroids (control) as regarding the VAS at    |      |
|            | baseline                                      |      |
| Table 11-b | Tests of heterogeneity and publication bias   | 97   |
|            | as regarding the VAS at baseline              |      |
| Table 12-a | Difference between PRP (intervention) and     | 101  |
|            | steroids (control) as regarding the VAS at    |      |
|            | one month                                     |      |
| Table 12-b | Tests of heterogeneity and publication bias   | 102  |
|            | as regarding the VAS at one month             |      |
| Table 13-a | Difference between PRP (intervention) and     | 106  |
|            | steroids (control) as regarding the VAS at 6  |      |
|            | months                                        |      |
| Table 13-b | Tests of heterogeneity and publication bias   | 107  |
|            | as regarding the VAS at 6 months              |      |

### List of abbreviations & Acronyms

| Abbreviation | Term                                      |
|--------------|-------------------------------------------|
| ACD          | acid citrate dextrose                     |
| ADP          | Adenosine Diphosphate                     |
| AFAS         | American Foot and Ankle Society           |
| ATP          | Adenosine triphosphate                    |
| bFGF         | basic fibroblastic growth factor          |
| CL           | confidence limit                          |
| EDTA         | Ethanol, Dimethylsulfoxide, Ethylenediam- |
| EDIA         | inetetraacetic Acid                       |
| EGF          | epidermal GF                              |
| FADI         | Foot and Ankle Disability                 |
| FEM          | fixed-effects method                      |
| FHSQ         | Foot Health Status Questionnaire          |
| IGF          | Insulin-like growth factor                |
| L-PRF        | Leucocyte- and platelet-rich fibrin       |
| L-PRP        | Leucocyte Platelet Rich Plasma            |
| NSAIDs       | non-steroidal anti-inflammatory drugs     |
| PDGF         | Platelet-Derived Growth Facto             |
| PF           | Plantar fasciitis                         |
| PPP          | platelet poor plasma                      |
| P-PRF        | Pure platelet-rich fibrin                 |
| P-PRP        | Pure Platelet Rich Plasma                 |

| Abbreviation | Term                                           |
|--------------|------------------------------------------------|
| PRP          | Platelet Rich Plasma                           |
| RBC          | red blood cells                                |
| REF          | random-effects method                          |
| RM           | Roles Maudsley                                 |
| SE           | standard error                                 |
| SF-36        | Short form-36 questionnaires                   |
| SMD          | standardised mean difference                   |
| TGF          | Transforming Growth Factor                     |
| UCLA         | University of California and Los Angeles score |
| US           | Ultra Sound                                    |
| VAS          | Visual Analogue Scale                          |
| VEGF         | vascular endothelial growth factor             |

### **ABSTRACT**

#### **Background and introduction:**

In our study we determine whether platelet-rich plasma (PRP) injections are associated with improved pain and function scores when compared with corticosteroid injections for plantar fasciopathy.

#### **Methods:**

This systematic review consisted of 6 steps, including a systematic search of the literature (PubMed, SCOPUS, Web of Science, and The Cochrane Library), selection of studies, recording of study characteristics, assessment of methodological quality and bias. and extraction of data on clinical outcomes and their comparisons between different groups, then meta analysis.

#### **Results:**

After exclusions, 19 studies were included in the final meta-analysis incorporating data on 911 unique patients (PRP Group=496, steroid=390) between the years 2007and 2017. The mean age of included patients in the PRP group ranged from 30.7 to 51.0 years compared with 33.9–59.0 years in the steroid group.

#### **Conclusion:**

PRP injections are associated with improved pain and function scores at three month follow-up when compared with corticosteroid injections. Information regarding relative adverse event rates and cost implications is lacking. Further, large-scale, high-quality, randomised controlled trials with blinding of outcome assessment and longer follow-up are required.

**Keywords**: Plantar fasciopathy . Platelet rich plasma . Corticosteroids . Meta-analysis.

### **INTRODUCTION**

The medial longitudinal arch of the foot is sustained mainly by the plantar fascia, a specific subcutaneous structure of dense connective tissue. It can act as a beam when the metatarsals are subjected to important bending forces (propulsion) and a truss when the foot absorbs forces of impact expanded during landing and in the stance phase of gait. The plantar fascia extends from the calcaneus to the distal part of metatarsophalangeal joints of each toe and is divided in central, medial, and lateral sections. The broadest and strongest component of the fascia is the central portion<sup>(1)</sup>. Plantar fasciitis (PF), which is characterized by pain, sharpened with the first walking in the morning or after a long period of rest, in adults worsening the patients' quality of life. PF affects both sexes, either in elite or recreational athletes and women are affected slightly more often than men<sup>(2)</sup>. In the United States, more than 1 million patients per year receive healthcare for PF, which is provided by family physician. Even podiatrists, orthopaedic surgeons, physical therapists, and chiropractors are involved in the treatment of PF, which develops on the plantar fascia insertion and can be unilateral or bilateral. It is a common cause of foot pain.

In the past PF was defined as chronic inflammatory condition, nowadays PF is considered a degenerative pathology, more similar to tendinopathy and to a chronic disease which is evident at the site of the attachment of plantar fascia at the medial tubercle of the calcaneus. PF

is also referred to plantar heel pain syndrome, heel spur syndrome, plantar fasciopathy or painful heel syndrome<sup>(3)</sup>. The acute phase of PF can turn into a chronic phase, which is characterized by a clinical remission and progression of the plantar fascia degeneration process.

The risk factors associated with the onset of PF are intrinsic and extrinsic. The intrinsic risk factors are associated with body characteristics and include anatomic, functional and degenerative factors. The extrinsic risk factors are associated with physical activities and include overuse, incorrect training and inadequate footwear.

PF is experienced in both recreational and elite athletes and is reported in different sports. A recent review concerning ankle and foot injuries in sport, that can be considered in differential diagnosis has included. Achilles tendinopathy is the most frequently investigated injury, mostly in running and soccer athletes. Other frequently reported pathologies were stress fracture or PF, mainly reported in basketball players and runners, respectively. These data are in agreement with those detected in elite athletes who competed at the London 2012 Olympic Games. The incidence of PF in runners ranges from 4.5 to 10%, and represents the third most frequently experience runningrelated musculoskeletal injuries after medial tibial stress syndrome (incidence ranging from 13.6 to 20%) and Achilles tendinopathy (incidence ranging from 9.1 to 10.9%) (4), in accordance with those previously reported by Taunton et al. (7). A recent prospective study that analysed the novice running-related injuries, has revealed that PF accounts for about 5%, after medial tibial stress syndrome (10%), patellofemoral pain (10%), medial meniscal injury (9%), and Achilles tendinopathy (7%)  $^{(5)}$ . In ultra-marathon runner athletes PF has an incidence of about 11%  $^{(6)}$ .

Local injection is a commonly used treatment modality for PF. Most authors recommend steroid injection, although there are some trials for other injectables like botulinum toxin , hyperosmolar dextrose/lidocaine and autologous platelet concentrate. (7)

Corticosteroid have been shown to inhibit fibroblast proliferation and expression of ground substance proteins. It is possible that these known effects may be of benefit in treatment of PF, as increased fibroblast proliferation and excessive secretion of proteoglycans are commonly reported features of the condition. (7)

Recently platelet-rich plasma (PRP) has been suggested as an alternative to steroid injections in the treatment of tendinopathy. PRP is a bioactive form of autologous whole blood with a platelet concentration greater than baseline. It has been suggested to aid wound healing by the local action of autologous growth factors and secretory proteins provided by the concentrated platelets. (8)

### **AIM OF THE WORK**

A systematic review and meta-analysis for available evidence about comparing the effects of platelet-rich plasma (PRP) and steroid injections in patients diagnosed with plantar fasciitis.