

Effect of Light Curing Distance of Different Bulkfill Composites on Top to Bottom Microhardness

Thesis Submitted to the Faculty of Dentistry, Ain Shams University in Partial Fulfilment of the Requirements of Master Degree in Operative Dentistry

By

Amr Mohamed Marzouk Nadeem

B.D.S - Future University in Egypt (2011) Teaching assistant - Future University

> Faculty of Dentistry Ain Shams University 2018

SUPERVISORS

Dr. Mokhtar Nagy Ibrahim

Professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University

Dr. Hanan Abdel Aziz Niazi

Professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University

Dr. Mohammed Nasser Mohammed Anwar

Lecturer of Operative Dentistry, Faculty of Dentistry, Ain Shams University

Dr. Rasha Hassan Afifi

Lecturer of Operative Dentistry, Faculty of Dentistry, Future University in Egypt

Acknowledgement

First and foremost, thanks God for everything,

I would like to express all my heart full thanks and sincere gratitude to our mentor **Dr. Mokhtar Nagy Ibrahim,** Professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University for his priceless and invaluable help, finally may his soul rest in peace.

I would like to express all my sincere gratitude and grateful appreciation to **Dr. Hanan Niazi**, Professor of Operative dentistry, Faculty of Dentistry, Ain Shams University for her continuous advice, supervision and valuable comments.

I would like to express my deep gratitude and thanks to **Dr**. **Mohammed Nasser**, lecturer of operative dentistry, Faculty of Dentistry, Ain Shams University for his continuous cooperation throughout this study.

I would like to express all my thanks and Concerns to **Dr**. **Rasha Hassan Afifi,** Lecturer of Operative dentistry, Faculty of Dentistry, Future University for her help and valuable comments.

I would like to express all my heart full thanks and sincere gratitude to my mentor **Dr. Essam Abdelhafez Naguib**, professor and head of Operative Dentistry department, Future University for his priceless, invaluable help, for his time and support.

Last but not least, my special thanks for all staff members of operative dentistry in Future University, for standing by my side all through the course of this study.

Dedication

This thesis is dedicated to all those people whom I love and whose images I always carry in my heart.

From the depth of my heart I dedicate it to
my loving parents, my wife, my little kids and my sister
for their lifelong inspiration for me to be the best, for their endless
love, support and countless sacrifices

List of Contents

List of Tables	II
List of Figures	IV
List of abbreviations	VI
Introduction	1
Review of literature	3
Aim of the study	29
Materials and Methods	30
Results	41
Discussion	81
Summary and Conclusions	92
References	95
Arabic Summary	_

LIST OF TABLES

Table no.	Title	Page no.
1	Materials, brand name, composition, manufacturers a batch number	
2	Variables of the study	32
3	Interaction of variables of the study	33
4	Multivariant ANOVA showing the effect of Curing tin distance and materials on mean microhardness	
5	Mean and standard deviation (SD) for the effect different materials on top and bottom microhardness	
6	Mean and standard deviation (SD) of top and botto microhardness for the tested materials with different curing times and curing distances	ent
7	Mean and standard deviation (SD) for the effect curing distance on top and bottom microhardness	
8	Mean and standard deviation (SD) for the effect Curing distance on top and bottom microhardness of t tested matrials with different curing times	the
9	Mean and standard deviation (SD) for the effect curing time on top and bottom microhardness	
10	Mean and standard deviation (SD) for the effect curing time on top and bottom microhardness w different curing distances	ith
11	Mean and standard deviation (SD) for top microhardne mean values of all tested groups	
12	Mean and standard deviation (SD) for bottomicrohardness mean values of all tested groups	
13	Three-way ANOVA showing the effect of Curing tin curing distance and materials on mean Top/Bottom ratio	
14	Mean and standard deviation (SD) for the effect different materials on top to bottom microhardness	

Table no.	Title	Page no.
15	Mean and standard deviation (SD) for Top/Bottomicrohardness ratio for the tested materials with different curing times and curing distances	ith
16	Mean and standard deviation (SD) for Top/Bottom ra for for the effect of different Curing distances on top bottom microhardness	to
17	Mean and standard deviation (SD) for Top/Bottom rate for effect of different Curing distances on top to bottomicrohardness ratio of the tested materials with different curing times	om ent
18	Mean and standard deviation (SD) for Top/Botto	
19	Mean and standard deviation (SD) for the effect different Curing time on top to bottom microhardness the tested materials with different curing distances	of
20	Means and standard deviation (SD) for top to botto microhardness ratio of all the tested groups	

LIST OF FIGURES

Fig. no.	Title	Page no.
1	Filtek bulkfill, Tetric Evoceram, Admira fusion xtra	30
2	Split Teflon mold	34
3	celluloid strip and microscopic slide placed below as above the mold.	
4	Light curing tip placed directly over the mold	36
5	A holder coupled to the light curing unit	36
6	Light curing distance controlled by a digital caliper	37
7	Electronic digital caliper	37
8	Elipar light curing unit	38
9	Demetron radiometer	38
10	speciemen marked with a permanent marker	39
11	Digital Vickers test	40
12	Mean microhardness for top and bottom surfaces the different tested materials	
13	Mean top and bottom microhardness for the test materials with different curing times and curin distances	ng
14	Mean microhardness for the top and bottom surfact with different Curing Distance	
15	Mean microhardness values for top and botto surfaces of different tested materials with differe curing times	ent
16	Mean microhardness for the top and bottom surfact with different curing time	
17	Mean top and bottom microhardness values for the effect of curing time on different tested materials with	411

Fig. no.	Title	Page no.
	different curing distances	
18	The top surface microhardness mean values of all tested groups	
19	The bottom microhardness mean values of all tested groups	<i>-</i> 1
20	Mean Top/Bottom ratio of different tested materials	68
21	Mean Top/Bottom ratio for the tested materials w different curing times and curing distances	
22	Mean Top/Bottom microhardness ratio with different curing distances	
23	Mean top/bottom microhardness ratio of different tested materials with different curing times	
24	Mean Top/Bottom microhardness ratio of the test materials with different curing times	
25	Mean Top/Bottom microhardness ratio of different tested materials with different curing distances	
26	Mean microhardness top to bottom ratio for of all t tested groups	00

LIST OF ABBREVIATIONS

BFMS	Bulkfill Materials
BIS-GMA	Bisphenol A glycerolate dimethacrylate
с-с	Carbon double bond
CIE	Commission Internationale d'Eclairage
CQ	Camphorquinone
DC	Degree of cure
FTIR	Fourier Transform Infrared Spectroscopy
HEMA	Hydroxy ethyl methacrylate
LCU	Light curing unit
LED	Ligh emitting diode
mm	Millimetre
nm	Nano meter
ORMOCERS	Organically modified ceramics
RBCS	Resin based composites
S	Seconds
TEGDMA	Triethylene Glycol Dimethacrylate
TLE	Total light energy
T-S distance	Distance between the tip of the light curing unit and the surface of restoration
VHN	Vickers hardness number
VHR	Vickers hardness ratio (VHR).
DOC	Depth of cure
KHN	Knoop hardness number
QTH	quartz tungsten halogen