

Evaluation of the role of *bla* genes in beta lactam and methicillin resistant *Staphylococcus aureus*By

Sarah Hussein Ahmed Hussein

B.Sc. Microbiology and Chemistry, Faculty of Women for arts, science and education, Ain-Shams University (2009)

Thesis

Submitted for partial fulfillment of Master Degree in Microbiology

Supervisors:

Prof. Yehia Ahmed El-Zawahry

Prof. of Microbiology, Botany Department, Faculty of Science, Zagazig University

Dr. Sahar Tolba Mohamed

Associate Prof. of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Dr. Fifi Mohamed Reda

Assistant Prof. of Microbiology, Botany Department, Faculty of Science, Zagazig University

Department of Microbiology Faculty of Science Ain Shams University

2018

Acknowledgement

Firstly, all praise to Allah for giving me the ability to achieve this work. I would like to express my sincere thanks and gratitude to Prof. **Yehia Ahmed El Zawahry**, Prof. of Microbiology, Botany Department, Faculty of Science, Zagazig University for supervising this work, encouragement, continuous support and valuable advice during the preparation of this thesis. Your supervision lend this work a panache.

I would be honored to express my deep appreciation and gratitude to Dr. **Sahar Tolba Mohamed,** Associate Prof. of Microbiology, Faculty of Science, Ain-Shams University for continuous assistance, useful discussions and sincere advice. Indeed, this work could not be accomplished without your potential

I wish to express my deep thanks to Dr. **Fifi Mohamed Reda**, Associate Prof. of Microbiology, Botany Department, Faculty of Science, Zagazig University for her help , constructive criticism and continuous encouragement.

I am sincerely grateful to all staff members, colleagues at the Botany department, Faculty of Science, Zagazig University for their support and continuous cooperation.

Contents	Page No.
1.Introduction	1
Aim of the study	3
2.Review of literature	4
2.1. Morphology and classification of <i>S.aureus</i>	6
2.2. Pathogenicity of <i>S.aureus</i>	9
2.2.1 . Pathogenicity and virulence factors of <i>S.aureus</i>	9
2.2.2 . Pathogenicity and antibiotic resistance	12
2.3. Bacterial mechanisms of antibiotic resistance	15
2.4. Bacterial resistance to different antibiotics	18
2.4.1. Macrolide resistance	18
2.4.2. Chloramphenicol resistance	19
2.4.3 . Aminoglycoside resistance	20
2.4.4 . Tetracycline resistance	20
2.4.5. Fluoroquinolone resistance	21
2.4.6. Sulfonamide-Trimethoprim resistance	22
2.4.7. β-lactams resistance	23
2.4.8. Methicillin resistance	24
2.5. Genetic basis of methicillin resistance	25
2.6. The acquisition and spread of antibiotic resistance in	28
bacteria	
2.7 . Horizontal gene transfer	29
2.8 . Diseases caused by <i>S.aureus</i>	29
2.8.1. Bacteraemia	30
2.8.2. Endocarditis	31
2.8.3. Skin infections	32
2.9 . Diagnostic identification of <i>S. aureus</i>	35
2.9.1. Antibiotic Sensitivity	35
2.10. Molecular techniques used for the detection and	36
characterization of staphylococcal virulence	
2.11. Humans to Animals transmission of MRSA	37
2.12. Treatment	38
3. Materials and Methods	42
3.1 Sample collection	42
3.2 Isolation of bacteria	42
3.3 purification	42
3.4 Identification of bacterial isolates	42
3.4.1 Microscopic examination	42
3.4.2 Biochemical characterization of the isolates	43

3.4.2.1 Catalase test	43
3.4.2.2.1 Slide Coagulase test	43
3.4.2.2.2. tube Coagulase test	44
3.4.2.3 Confirmatory test for staphylococci isolates	44
3.4.2.3. 1 Mannitol fermentation	44
3.4.2.3.2. Blood hemolysis test	44
3.4.2.3.3. Tellurite reduction and Baired –Parker Agar test	45
3.5. Maintenance of <i>S.aureus</i> isolates	45
3.6. Media used in this study	45
3.7. Antibiotics	48
3.7.1. Antibiotic sensitivity test	48
3.8. Determination of minimum inhibitory concentration	50
3.9. Detection of <i>mec</i> A and <i>bla</i> Z gene in methicillin –	50
resistant S.aureus	
4.Results	53
4.1. Collection of samples and isolation of bacteria	53
4.2. Characterization and identification of the bacterial	56
isolates	
4.3 Susceptibility tests of the <i>S. aureus</i> isolates to	58
various groups of antibiotics	
4.4. Determination of minimum inhibitory concentration	65
(MICs) for S.aureus isolates	
4.5. Detection of antibiotic resistance genes in <i>S.aureus</i>	69
isolates by the Polymerase Chain Reaction (PCR)	
5.Discussion	73
6. Summary and Conclusion	83
7.References	87
8. Arabic Summary	

List of Tables

Tables	Pages
Table (a): Mechanisms of resistance to different classes of	27
antimicrobials	
Table (1): Types of antibiotic used	48
Table (2): Interpetive standard of Zone diameters for	49
S.aureus according to CLSI	
Table (3): Sources and numbers of <i>S. aureus</i> isolates.	54
Table (4): Types of samples and infections in relation to	54
gender of patients and the hospital wards	
Table (5). Morphological, cultural, and biochemical	57
properties for identification of S.aureus isolates	
Table (6): Antibiotic sensitivity profile of tested S.aureus	59
isolates.	
Table (7): MIC of different antibiotics to isolates of	67
S.aureus.	
Table (8): Distribution of mecA and blaZ genes among the	70
isolates	

List of figures and photos

Number	Title	Page
Figure (1)	A number of mechanisms used by common antibiotics to deal with bacterial resistance.	17
Figure (2)	Microscopic and biochemical characterization of <i>Staphylococcus</i> aureus.	58
Fig. (3)	Representative Mueller Hinton agar plates showing sensitivity of <i>S. aureus</i> isolates to a number of antibiotic discs	63
Figure (4)	Antibiotic resistance pattern of <i>S.aureus</i> isolates	
Figure (5):	Representative agarose gel photo of PCR amplicons of <i>mec</i> A gene and <i>bla</i> Z gene	72

List of Abbreviation

Abbreviation	Full term		
AMP	Ampicillin		
AZM	Azithromycin		
CA-MRSA	Community-acquired Staphylococcus aureus		
CAZ	ceftazidime		
CDC	Center for Disease and prevention		
CFU	Colony Forming Unit		
CIP	ciprofloxacin		
CLSI	Clinical and Laboratory Standards Institute		
CPS	Coagulase positive staphylococci		
CRO	ceftriaxone		
CTX	cefotaxime		
DAD	Disc agar diffusion		
DNA	Deoxyribonuclic acid		
DO	Doxycycline		
Е	Erythromycin		
EDTA	Ethylenediamine tetra acetic acid		
g.	Gram		
h.	hour		
HA	Hospital- acquired methicillin resistant		
	Staphylococcus aureus		
IPM	Imipenem		
μg	Microgram		
MDR	Multi-drug resistance		
MEM	Meropenem		
mL	millilitre		
MIC	Minimum inhibitory concentration		
MRSA	Methicillin resistant Staphylococcus aureus		
Ox	Oxacillin		
PBP	Penicillin binding protein		
PFGE	Pulse field gel electrophoresis		
PCR	Polymerase Chain reaction		
SAB	Staphylococcus aureus bacteremia		
SCCmec	Staphylococcal cassette chromosome		
VA	vancomycin		

Evaluation of the role of *bla* genes in beta lactam and methicillin resistant *Staphylococcus aureus*

Sarah H. Ahmed¹, Sahar T.M. Tolba¹, Yehia A. El-Zawahry²

Abstract

One hundred and nineteen clinical samples were isolated from patients admitted in different hospitals in El-Sharkia governorate. Sixty six isolates were confirmed to be S. aureus. Susceptibility to different antimicrobial agents and Minimum inhibitory concentration tests showed that all the isolates were resistant to β -lactam antibiotics, 77.2% (n=51) isolates were methicillin resistant S. aureus MRSA, while almost all the isolates were sensitive to vancomycin and tigecycline. Polymerase Chain Reaction (PCR) of mecA, encoding methicillin resistance, and blaZ, β lactamase biosynthetic gene, revealed the coexistence of both genes in 56.8% (n= 29/51) of the isolates. Meanwhile, 11.7% (n=6/51) of MRSA isolates phenotypically resistant to oxacillin were found to be mecA. This data support the fact that the expression of bla genes enhanced the phenotypic expression of oxacillin resistance as a result of β-lactamase hyperproduction. On the other hand, 33% of MRSA (n=17/51) were blaZ suggesting a mutation event in blaZ or the existence of an alternative mechanisms for β -lactam resistance that may compete with mecA gene.

Key words: *Staphylococcus aureus - mec*A- *bla*Z- MRSA- MIC- β-lactamase resistant MRSA-

¹ Department of Microbiology, Faculty of science -Ain-Shams University ,Cairo, Egypt

² Department of botany, Zagazig University, Zagazig, Egypt

Introduction

Staphylococcus aureus is an extraordinarily versatile pathogen that can survive under hostile external environmental conditions, colonize mucous membranes and skin, and cause severe toxin-mediated disease or severe invasive purulent infections in humans (Archer, 1998; Lowy, 1998).

It represents an increasing problem, in hospitals for decades as well as in community-acquired infections.

The severity of staphylococcal infections combined with feeble response to antibiotic treatment is due to the specific suite of virulence and antibiotic resistance-associated genes (**Peacock et al.**, **2002**).

Most Methicillin-resistant *Staphylococcus aureus* (MRSA) infections occur in people who have been in hospitals or other health care settings, such as nursing homes and dialysis centers. Staphylococcal resistance to beta-lactam antibiotics is mediated by either of two mechanisms: (i) production of beta-lactamase and (ii) production of an altered target penicillin-binding protein (PBP), PBP2a.

Methicillin resistant gene mecA is embedded in a large heterologous chromosomal cassette, the SCCmec element (Ito et al., 1999). Some MRSA strains carry upstream to the mecA gene

the regulatory genes mecI-mecR1 encoding for a repressor and a sensor/inducer of the *mec*A expression, respectively (**Hiramatsu et al., 1992**).

This genetic organization is similar to the beta-lactamase locus that encodes for penicillin-resistance only, and contains the structural gene (*blaZ*), a repressor (*blaI*) and a sensor/inducer (*blaR1*). There is a cross-talk between both regulatory systems, as each one alone is able to control the transcription of mecA and blaZ (**Hackbarth and Chambers, 1993**).

Based on those observations, it has been postulated that full resistance to beta-lactamase of many contemporary MRSA clinical strains, implies a non-functional mecI-mecR1 regulatory system (Hiramatsu et al., 1992). The cross link between the mec genes and bla genes is not yet resolved. At present, there are many clonal complex disseminated in different healthcare settings.

In the current study, microbiological and molecular studies were used to study the prevalence of some resistance genes among MRSA isolates from inpatients at different hospitals in El-Sharkia Governerate.

Aim of the work

This study aims to assess the role of blaZ in β -lactam resistant methicillin resistant S. aureus isolates. The use of molecular techniques in the detection of MRSA is essential for rapid diagnosis.

Objectives:

To achieve the aim of the study, the following objectives have been carried out

- 1. Isolation and characterization of *Staphylococcus aureus* (*S. aureus*) isolated from nosocomial cases in different hospitals in El- Sharkia Governerate.
- 2. Investigating the sensitivity and the resistance of *S. aureus* isolates to different antibiotics commonly used in infectious diseases.
- 3. Determination of minimum inhibitory concentration (MIC).
- 4. Detection of *mec*A and *bla*Z genes in methicillin-resistant *S. aureus*.
- 5. Assessing the correlation between the *mec*A and *bla*Z genes in the isolates.

Review of Literature

Stapyhylococcus aureus has become a major health problem prevalent and fatal conditions in humans that causes many (kluytmans et al., 2010). Although it is a commensal organism colonizing the skin and mucosal surfaces of its carriers including the anterior nasal nares, nasopharynx, intestine, upper respiratory tract, the widespread of the resistant form of *Staph.aureus* (MRSA) accompanied by the remarkable morbidity and mortality made it notoriously regarded as pervasive pathogenic a microorganism(Chen et al., 2012; Melzer et al. 2013; Brown et al.2014).

MRSA was first discovered in the UK nearly in 1961, 2 years after the introduction of methicillin and has now a worldwide spread, particularly in the hospitals and other healthcare settings where it is ordinarily termed a superbug. It could also be known as oxacillin-resistant *S.aureus* (ORSA) (**Ippolito** *et al.*,**2010**).

As rapidly as new antibiotics were introduced, *S.aureus* has developed many virulence factors and efficient mechanisms to neutralize them. Outbreaks have frequently been reported in neonatal and surgical intensive care units (ICU), inpatient wards, and operating rooms. In addition, the patient-to-patient nosocomial

transmission responsible for such outbreaks predominantly occurs through the hands of healthcare workers. Nosocomial infections caused by MRSA are related to long hospitals stays of patients, poor infection control practices, and this eventually add more financial burden on the society (Mims et al.,2004)

Unastonishingly, it is a main reason for a broad clinical spectrum of skin infections. Staphylococcal infections can turn deadly if the bacteria invade deeper into the body, entering the bloodstream, joints, bones, lungs or heart .It may lead, in some cases, to life-threatening systemic diseases, especially in patients accommodated in hospital wards. Among these diseases are pneumonia, sepsis, meningitis that result in nearly more deaths than HIV, viral Hepatitis, and tuberculosis combined (Sebastian et al.,2012).

Reduced susceptibility faced by most of these *S.aureus* strains to antimicrobial agents nowadays has caused a global health concerns (**Hiramtsu** *et al.*,2014, **Spagnolo** *et al.*,2014).

Infections caused by MRSA is not restricted to a certain geographic area; it is a worldwide problem. Europe has a strong presence of MRSA, accounting for approximately 44% of nosocomial infections in the year 2008. Fortunately, this is improving thanks to surveillance programs and stringent outbreak