GENETIC CONSTRUCTION OF SOME BACTERIAL STRAINS FOR SOME PESTICIDES BIODEGRADATION

By

GHADA MOSTAFA EL-SAYED MOHAMMED

B.Sc. Science (Microbiology and Chemistry), Zagazig University, 2004M.Sc. Agric. Sci. (Genetics), Ain Shamus University, 2013

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

in
Agricultural Sciences
(Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

GENETIC CONSTRUCTION OF SOME BACTERIAL STRAINS FOR SOME PESTICIDES BIODEGRADATION

By

GHADA MOSTAFA EL-SAYED MOHAMMED

B.Sc. Science (Microbiology and Chemistry), Zagazig University, 2004M.Sc. Agric. Sci. (Genetics), Ain Shamus University, 2013

This thesis for Ph.D. degree has been approved by

Date of Examination: / / 2018

Dr. Mohamed Serag El-Din Abd El-Sabour Prof. Emeritus of Genetics, Faculty of Agriculture, Benha University. Dr. Khaled Abd El-Aziz Soliman Prof. of Genetics, Faculty of Agriculture, Ain Shams University. Dr. Ashraf Bakry Abd El-Razik Prof. of Genetics, Faculty of Agriculture, Ain Shams University. Dr. Samir Abd El-Aziz Ibrahim Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.

GENETIC CONSTRUCTION OF SOME BACTERIAL STRAINS FOR SOME PESTICIDES BIODEGRADATION

By

GHADA MOSTAFA EL-SAYED MOHAMMED

B.Sc. Science (Microbiology and Chemistry), Zagazig University, 2004M.Sc. Agric. Sci. (Genetics), Ain Shamus University, 2013

Under the supervision of:

Dr. Samir Abd El-Aziz Ibrahim

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Ashraf Bakry Abd El-Razik

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Nivien Abd El-Rahman Abosereih

Researcher Prof. of Genetics, Department of Microbial Genetics, National Research Center.

ABSTRACT

Ghada Mostafa El-Sayed Mohammed: Genetic Construction of Some Bacterial Strains for Some Pesticides Biodegradation. Unpublished PhD Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2018.

Screening the most persistent pesticides residues in five Egyptian agriculture soils reveled that organophosphorus pesticides; diazinon and chlorpyrifos were the most persistent pesticides in the Egyptian soil samples. The highest concentration (0.09 mg/kg soil) was recorded by chlorpyrifos in Kaliopia and (0.08 mg/kg soil) was recorded by diazinon in Beheira. Four potent degradative bacterial isolates were isolated from organophosphates contaminated soils and molecularly identified by PCR amplification and sequencing of 16s rDNA and groEl genes as Cronobacter muytjensii strain GH10, Pseudomonas aeruginosa strain GH2NO8, Achromobacter xylosoxidans strain GH9OP and Pseudomonas putida strain GH4SNO/P. These bacterial isolates were able to degrade 92.59%, 91.82%, 97.75% and 90.78% of diazinon (600 mg/l), for the previous mentioned bacterial strains, respectively as compared to 4.28% in control; however, they degraded 93.43%, 78.51%, 93.18% and 95.36% of chlorpyrifos (480 mg/l) as compared to 4.28% in control after 20 days of incubation. Due to Pseudomonas aeruginosa strain GH2NO8 and Achromobacter xylosoxidans strain GH9OP ethylmethane sulphonate mutagenesis, higher degrader mutants were obtained; PAM8 was able to degrade 62.19% of diazinon and 54.08% of chlorpyrifos as compared with Pseudomonas aeruginosa as wild type that degraded 38.19% and 29.44 % of diazinon and chlorpyrifos, respectively. However AchM15 exhibited the ability to degrade 84% of diazinon and 63% of chlorpyrifos as compared to 49% and 34% in Achromobacter xylosoxidans as wild type respectively after five days of incubation. PAM8 and AchM15 were subjected to second step EMS mutagenesis, PAMS9 and AchMs1 were the best mutants; they degraded 86.21% and 96.03% of diazinon and 75.70% and 70.28% of chlorpyrifos after five days of incubation. Genes of *oph* in *Cronobacter muytjensii* strain GH10 and *Achromobacter xylosoxidans* strain GH9OP were cloned into pET29a (+) vector and transformed into *E. coli* DH5α. DNA sequences of *oph* genes in these bacterial isolates were deposited in Genbank under accession number MH018245 and MH018244, respectively. Moreover these genes were successfully expressed in *E.coli* BL21 (DE3) as expression host. IMPH and TCP as diazinon and chlorpyrifos metabolites were detected due to bacterial biodegradation by GC/MS analysis.

Key Words: Organophosphates, Microbial biodegradation, 16sr DNA, groEl; EMS mutation; *oph* genes; *E. coli*; gene cloning and expression; GC/MS analysis.

ACKNOWLEDGMENT

First and foremost praises and thanks to Allah, the Lord, the most Gracious, and the most Merciful. Allah given me the power to believe in my passion and pursue my dreams. I would never have been able to finish my dissertation without the guidance of my committee members, help from friends, and support from my family.

I would like to express my deep appreciation and gratitude to **Prof. Dr. Samir Abd El-Aziz Ibrahim** for his guidance, encouragement, valuable discussions, suggestion and creative ideas which helped me during the progress of this work.

I would like to thank **Prof. Dr. Ashraf Bakry Abd El-Razik** for his kindness, guidance and facilities offered during this work.

I would like to express my special gratitude and thanks to **Prof. Dr. Nivien Abd El-Rahman Abosereih** for her kindness, patience, valuable advices and motivation during the laboratory work and for her great effort during writing the thesis. She always was being like my mother.

I would like to thank **Prof. Dr. Fatma Mamdouh Hafez** for her kindness.

I would like to thank **Dr. Maher Abd El-Aleem Hammad** for his kindness and help offered during this work

Gratefulness and thanks to **my colleagues at microbial genetics lab**, for their cooperation and assistance during this work and many thanks to all my friends at National Research Center for their help and moral support.

Finally I would like to thank **my family** for their tremendous support, encouragement and constant love in all my life.

CONTENTS

	Page
LIST OF TABLES	VII
LIST OF FIGUERS	III
LIST OF ABBREVIATION	XIV
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Pesticides definition	4
2.History of organophosphates use	4
3. Microbial degradation of organophosphorus compounds	7
3.1. Isolation of potent organophosphates degrading bacterial	
isolates using enrichment culture method.	10
3.2. Molecular identification of potent organophosphorus	
degrading bacterial isolates	11
3.3. Microbial enzymes involved in organophosphates	
detoxification	13
4. Bacterial genes involved in organophosphates degradation	17
5. Improvement of organophosphates bacterial degradation	19
5.1. Non-genetic improvement	19
5.2. Genetic improvement	20
5.2.1. Genetic improvement by site-directed mutation	20
5.2.2. Genetic improvement by ethylmethane sulfonate (EMS)	
mutation induction	20
5.2.3. Cloning and expression of bacterial genes involved in	
organophosphates degradation	21
6. Analysis of organophosphorus hydrolase enzyme (OPH)	
enzyme by sodium dodecyl sulfate-polyacrylamide gel	
electrophoresis (SDS-PAGE)	23
MATERIALS AND METHODS	24
1. Materials	24
1.1. Collected agriculture soil samples	24
1.2. Bacterial isolates	24

		Page
1.3.	Organophosphorus pesticides	24
1.4. Ethylmethane sulphonate (EMS)		24
1.5 F	Primers	24
1.5.1	1.16S rDNA universal primers	24
1.5.2	2. groEL gene universal primers	24
1.5.3	Primers used for identification and partial sequencing of	
	oph gene in bacterial isolates	25
1.5.4	1. Specific primers used for <i>oph</i> gene isolation in bacterial	
	isolates	25
1.5.5	5. Plasmid vector pET-29 a (+) primers used for <i>oph</i> gene	
	complete sequence	26
1.6.	Plasmid vector	26
1.7.	DNA ladders	28
1.8.	Kits	28
1.9.	Computer soft tools	28
1.10	. Media	29
1.10.1. Luria-Bertani (LB) medium		29
1.10	.2. Mineral salt medium (MSM) (Zajic and Supplisson,	
1972	2.	30
1.11	. Buffers	30
1.11	.1. SDS-PAGE (Poly acrylamide gel electrophoresis) buffers	30
1.11	.1.1. 30% Acrylamide	30
1.11	.1.2. Tris (pH 8.8)	30
1.11	.1.3. Tris (pH 6.8)	30
1.11	.1.4. 10% SDS	31
1.11	.1.5. Ammonium persulphate (APS)	31
1.11	.1.6. Resolving gel (15%)	31
1.11	.1.7. Stacking gel	31
1.11	.1.8. Protein extraction buffers	31
1.11	.1.8.1. TNT buffer 1	31
1.11	.1.8.2. TNT buffer 2	31

	Page
1.11.1.9. Loading buffer (Laemmeli buffer)	32
1.11.1.10. Running buffer	32
1.11.1.11. Staining solution	32
1.11.1.12. Destaining solution	32
2. Methods	32
2.1. Detection the most persistent pesticides residues in the	
Egyptian agriculture soils	32
2.2. Enrichment and selection of potent pesticides degrading	
bacteria	33
2.3. Bacterial degradation of chlorpyrifos and diazinon in	
mineral salt liquid media	33
2.4. Extraction of chlorpyrifos and diazinon residues	34
2.5. Chromatographic determination of chlorpyrifos and	
diazinon residues according to (Metwally, 2014).	34
2.6. Data calculation	34
2.7. Extraction of genomic DNA	35
2.8. Molecular identification of bacterial isolates by PCR	
amplification and sequencing of 16S rDNA and groEL	
genes.	35
2.9. Agarose Gel Preparation	36
2.10. Phylogenetic analysis of bacterial isolates based on 16S	
rDNA:-	36
2.11. Ethyl methanesulfonate (EMS) Mutation Induction and	
Mutant Selection	36
2.12. Identification and partial amplification and of <i>oph</i> gene; the	
gene might be responsible for OPs Degradation in the	
bacterial isolates	37
2.13. Isolation and complete sequencing of <i>oph</i> gene	38
2.14. Plasmid isolation	39
2.15. Construction of recombinant plasmid	39
2.16. Competent cells preparation	39

	Page
2.17. Transformation	40
2.18. Selection of positive transformed colonies	40
2.19. DNA sequencing of oph gene	40
2.20. Expression of <i>oph</i> gene in <i>E.coli</i> BL21 (DE3)	40
2.21. Extraction of whole-cell proteins	41
2.22. SDS-PAGE	41
2.22.1. Gel preparation	41
2.22.2. Gel running	41
2.22.3. Gel staining and destaining	42
RESULTS AND DISCUSSION	43
1. Detection the most persistent pesticides residues and their	
concentrations in the collected Egyptian soil samples	43
2. Isolation of potent organophosphates degrading bacterial	
isolates	45
3. Molecular identification of OPs degrading bacterial isolates	
by PCR amplification of the 16S rDNA and groEl genes	47
4. Biodegradation of chlorpyrifos and diazinon in liquid MSM	
by bacterial isolates	52
5. Mutation induction by Ethylmethane sulphonate (EMS)	59
5.1. First step EMS mutation induction	59
5.1.1. Effect of EMS mutation induction on diazinon and	
chlorpyrifos biodegradation by Achromobacter xylosoxidans	
GH9OP	62
5.1.2. Effect of EMS mutation induction on diazinon and	
Chlorpyrifos biodegradation by Pseudomonas aeruginosa strain	
GH2NO8	65
5.2.2. Second step EMS mutation induction	68
5.2. Evaluation the behavior of wild types and their higher	
mutants in OPs degradation through time shift	70
6. Identification and partial sequencing of oph gene; the gene	
might be responsible for OPs Degradation in the bacterial	74

	Page
isolates	
7. Analysis of <i>oph</i> genes partial sequences using bioinformatics	
tools	75
8. Isolation, cloning and complete sequencing of oph gene	82
8.1. Isolation of <i>oph</i> genes	82
8.2. Cloning and complete sequencing of oph genes in E.coli	
DH5α	83
8.2.1. Screening for <i>E. coli</i> DH5α positive colonies transformed	
with the recombinant plasmid vector	84
8.3. Complete sequencing and alignment of <i>oph</i> genes	86
8.4. Analysis of <i>oph</i> genes complete sequence by bioinformatics	
tools	91
9. Cloning and expression of <i>oph</i> genes in <i>E. coli</i> BL21 (DE3)	95
9.1. Screening for E. coli BL21 (DE3) positive colonies	
transformed with recombinant plasmid vector	96
0.2 A 1 ' C 1 ' C 1 GDG BACE	
9.2. Analysis of <i>oph</i> gene expression by SDS-PAGE	99
10. Evaluation of chlorpyrifos biodegradation by transformant	
E.coli BL21 (DE3)	101
11. Identification of the degradation products of diazinon and	
chlorpyrifos by GC/MS	104
SUMMERY AND CONCLUSION	110
REFERENCES	118
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Primers used for 16s rDNA PCR amplification and	
	sequencing	24
2	Universal primers used for groEl gene PCR	
	amplification and sequencing	25
3	Specific primers nucleotide sequences used for oph	
	gene identification and partial sequencing in bacterial	
	isolates	25
4	Specific primers sequences used for oph gene	
	isolation in bacterial isolates	26
5	pET -29 a (+) Vector primers used for oph genes	
	complete sequence	26
6	The concentrations of detected pesticides in the	
	collected soil samples	44
7	Accession numbers of 16s rDNA and groEl genes	
	partial sequence of bacterial isolates.	52
8	Effect of EMS (20 μl/ml) on cell count of	
	Achromobacter xylosoxidans strain GH9OP and	
	Pseudomonas aeruginosa strain GH2NO8.	60
9	Diazinon and chlorpyrifos biodegradation activity by	
	induced EMS mutants from Achromobacter	
	xylosoxidans strain GH9OP after different treatment	
	periods.	64
10	Diazinon and chlorpyrifos biodegradation activity by	
	induced EMS mutants from <i>Pseudomonas</i>	
	aeruginosa strain GH2NO8after different treatment	
	periods.	67

LIST OF FIGUERS

Fig. No.		Page
1	Inhibition of AChE active site by organophosphates	6
2	The overall structure of organophosphorus	
	compounds.	7
3	Organophosphorus compounds pathway of	
	degradation.	17
4	Genetic map of pET-29 a (+) plasmid vector	
	(Novagen, Germany)	27
5	DNA ladders, 1 kb and 100 bp DNA ladder.	28
6	GC-FPD chromatogram of the chlorpyrifos and	
	diazinon pesticides.	45
7	Chemical structure of chlorpyrifos and diazinon.	45
8	Growth of bacterial isolates on liquid mineral salt	
	media containing chlorpyrifos (480mg/l) after 5 days	
	incubation.	46
9	Growth of bacterial isolates on liquid mineral salt	
	media containing diazinon (600 mg/l) after 5 days	
	incubation.	47
10	Agarose gel electrophoresis for PCR product of 16s	
	rDNA gene in bacterial isolates.	49
11	Agarose gel electrophoresis for PCR product of groEl	
	gene of bacterial isolates.	49
12	Phylogenetic tree of Cronobacter muytjensii strain	
	GH10 (query_233217) based on 16S rRNA gene	
	sequences using neighbor joining method.	50
13	Phylogenetic tree of Pseudomonas aeruginosa strain	
	GH2NO8 (query_205489) based on 16S rRNA gene	
	sequences using neighbor joining method.	50
14	Phylogenetic tree of Achromobacter xylosoxidans	
	strain GH9NO8 (query_126877) based on 16S rRNA	
	gene sequences using neighbor joining method.	51

Fig. No.		Page
15	Phylogenetic tree of Pseudomonas putida strain	
	GH4SNO/P (query_149375) based on 16S rRNA gene	
	sequences using neighbor joining method.	51
16	Biodegradation percentage of chlorpyrifos (480 mg/l)	
	by Cronobacter muytjensii strain GH10.	54
17	Biodegradation percentage of diazinon (600 mg/l) by	
	Cronobacter muytjensii strain GH10.	54
18	Biodegradation percentage of chlorpyrifos (480 mg/l)	
	by Pseudomonas aeruginosa strain GH2NO8.	55
19	Biodegradation percentage of chlorpyrifos (480 mg/l)	
	by Achromobacter xylosoxidans strain GH9OP.	55
20	Biodegradation percentage of chlorpyrifos (480 mg/l)	
	by Pseudomonas putida strain GH4SNO/P.	56
21	Biodegradation Percentage of chlorpyrifos (480 mg/l)	
	in control media.	56
22	Biodegradation percentage of diazinon (600 mg/l) by	
	Pseudomonas aeruginosa strain GH2NO8.	57
23	Biodegradation percentage of diazinon (600 mg/l) by	
	Achromobacter xylosoxidans strain GH9OP.	57
24	Biodegradation percentage of diazinon (600 mg/l) by	
	Pseudomonas putida strain GH4SNO/P.	58
25	Biodegradation Percentage of diazinon (600 mg/l) in	
	control media.	58
26	Survival percentage of Achromobacter xylosoxidans	
	strain GH9OPafter EMS (20 µl/ml) treatment.	61
27	Survival percentage of Pseudomonas aeruginosa	
	strain GH2NO8 after EMS (20 µl/ml) treatment.	61
28	Bacterial growth of Achromobacter xylosoxidans	
	strain GH9OPand its mutants on liquid MSM	
	containing Chlorpyrifos (480 mg/l) and diazinon (600	
	mg/l).	69

Fig. No.		Page
29	Bacterial growth of Pseudomonas aeruginosa strain	
	GH2NO8 and its mutants on liquid MSM containing	
	chlorpyrifos (480 mg/l) and diazinon (600 mg/l).	70
30	Diazinon biodegradation by Achromobacter	
	xylosoxidans strain GH9OP and its higher mutants.	72
31	Chlorpyrifos biodegradation by Achromobacter	
	xylosoxidans strain GH9OP and its higher mutants.	72
32	Diazinon biodegradation by Pseudomonas aeruginosa	
	strain GH2NO8 and its higher mutants.	73
33	Chlorpyrifos biodegradation by Pseudomonas	
	aeruginosa strain GH2NO8 and its higher mutants.	73
34	Agarose gel electrophoresis for PCR product of <i>oph</i>	
	gene	74
35	Predicted conserved domain in Cronobacter	
	muytjensii strain GH10 oph gene based on conserved	
	domain database (CDD) of NCBI.	76
36	Predicted conserved domain in Pseudomonas	
	aeruginosa strain GH2NO8 oph gene based on	
	conserved domain database (CDD) of NCBI.	77
37	Predicted conserved domain in Achromobacter	
	xylosoxidans strain GH9OP oph gene based on	
	conserved domain database (CDD) of NCBI.	77
38	Phylogenetic tree of Cronobacter muytjensii strain	
	GH10 oph gene and other organophosphorus	
	hydrolase genes constructed by the neighbor-joining	
	method.	79
39	Phylogenetic tree of <i>Pseudomonas aeruginosa</i> strain	
	GH2NO8 oph gene and other organophosphorus	
	hydrolase genes constructed by the neighbor-joining	
	method.	