Ain Shams University
Faculty of Engineering

Design and Production Engineering Department

Structural Optimization of Horizontal
Axis Wind Turbine Blades

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of

Master of Science in Mechanical Engineering
by
Julia Raafat Faheem Ramzy Faheem Petro
Bachelor of Science in Mechanical Engineering
Design and Production Engineering

Faculty of Engineering, Ain Shams University, June 2012
Supervised by

Prof. Dr. Adel Mohamed Moneeb Elsabbagh
Prof. Dr. Wael Nabil Hassan Akl

Cairo - (2018)
I



Ain Shams University
Faculty of Engineering

Design and Production Engineering Department

Structural Optimization of Horizontal
Axis Wind Turbine Blades

by
Julia Raafat Faheem Ramzy Faheem Petro
Bachelor of Science in Mechanical Engineering
(Design and Production Engineering)
Faculty of Engineering, Ain Shams University, June 2012
Examiners’ Committee

Name and Affiliation Signature

Dr. Mohamed Mostafa Elkhayat

Chairman of New and Renewable energy authority

Prof. Dr. Mohamed Hazem Abdel Latif ..

Design and Production , Ain Shams University

Prof. Dr. Adel Mohamed Moneeb Elsabbagh ...l

Design and Production , Ain Shams University

Prof. Dr. Wael Nabil Hassan AKI

Design and Production , Ain Shams University



Statement

This thesis is submitted in partial fulfillment for the degree of Master of Science in
Mechanical Engineering, to Faculty of Engineering, Ain Shams University. The
author carried out the work included in this thesis at the laboratories of the Design and
Production Engineering department, Faculty of Engineering, Ain Shams University.
No part of this thesis has been submitted for a degree or qualification at any other

university.

Julia Raafat Faheem Ramzy Faheem Petro

Signature:

Date:



Researcher Data

Name

Date of birth

Place of birth

Last academic degree

Field of specialization
University issued the degree
Date of issued degree

Current job

: Julia Raafat Faheem Ramzy Faheem Petro

: 20/2/1990

: Cairo

: Bachelor of Science

: Design and Production Engineering

: Faculty of Engineering- Ain Shams University
2012

: Demonstrator



Thesis Summary

Designers of modern wind turbines are more interested in stiffer and lighter
blade designs as the growth of their size leads to reducing the production costs
of electrical energy. The present work introduces a design analysis framework
for wind turbines, using a combination of tools specially developed for this
purpose. SNL 100-00 is taken as a reference wind turbine blade originally
designed by Sandia National Labs. This blade is chosen as a case study to
implement the proposed methodology. The first step in the methodology is to
model the blade structure using two pre-processing python scripts: (1)
Airfoil2BECAS to create a 2D finite element shell model for each cross-
section and (2) Shellexpander to generate the input files which are needed by
the cross-sectional analysis software BECAS. The cross-sectional properties
of the glass fiber-epoxy composite wind turbine blade computed by BECAS
are then used as input to the aeroelastic code HAWC?2 to conduct aeroelastic
analysis and simulate DLCs where HAWCStab2 is used for tuning the
controller parameters. The results developed by the proposed methodology are
validated against those published by Sandia National Laboratories. Close
agreement is observed and hence the proposed methodology can be used to
introduce design modifications to improve the blades characteristics.
Modifications including (1) changing the slope of the shear webs and (2) the
spacing between them are investigated showing good chance of improving the
structural and inertial properties of the blade. To evaluate such modifications,
comparison against baseline design is conducted using the following metrics:
Flapwise and Edgwise loading, tip deflection and cross-sectional properties
including: Flapwise and Egdewise bending stiffnesses, axial stiffness, torsional

stiffness and mass density.



PSO algorithm is utilized to develop an automatic tool to design optimal
structure of wind turbine blades. The developed code is used to solve a
benchmark problem and results are validated against published results and also
against results obtained using GA toolbox in MATLAB. Finally, the
optimization code is combined with the blade’s analysis framework presented
to find the optimal slope for the shear webs and the optimal spacing
distribution. Three variants of the objective function are considered aiming to
reduce the mass and increase the stiffness of the blade. The resulting optimized
configuration increases the flapwise stiffness normalized by mass density by
varying percentages along the span of the blade reaching up to 18% increase
and life expectancy increase ranging between 10-75%. This increase is
expected to be directly reflected on the blades cost.

Keywords: Structural Optimization, Wind turbine blades, Cross sectional analysis,

Finite Element Modeling, Composite structures, Aeroelastic analysis.
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