

Ain Shams University

Faculty of Engineering

Design and Production Engineering Department

Structural Optimization of Horizontal Axis Wind Turbine Blades

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mechanical Engineering

by

Julia Raafat Faheem Ramzy Faheem Petro

Bachelor of Science in Mechanical Engineering

Design and Production Engineering

Faculty of Engineering, Ain Shams University, June 2012

Supervised by

Prof. Dr. Adel Mohamed Moneeb Elsabbagh

Prof. Dr. Wael Nabil Hassan Akl

Cairo - (2018)

Ain Shams University

Faculty of Engineering

Design and Production Engineering Department

Structural Optimization of Horizontal Axis Wind Turbine Blades

by

Julia Raafat Faheem Ramzy Faheem Petro

Bachelor of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, June 2012

Examiners' Committee

Name and Affiliation	Signature
Dr. Mohamed Mostafa Elkhayat Chairman of New and Renewable energy authority	
Prof. Dr. Mohamed Hazem Abdel Latif Design and Production, Ain Shams University	
Prof. Dr. Adel Mohamed Moneeb Elsabbagh Design and Production , Ain Shams University	
Prof. Dr. Wael Nabil Hassan Akl Design and Production, Ain Shams University	
	Date:

Statement

This thesis is submitted in partial fulfillment for the degree of Master of Science in Mechanical Engineering, to Faculty of Engineering, Ain Shams University. The author carried out the work included in this thesis at the laboratories of the Design and Production Engineering department, Faculty of Engineering, Ain Shams University. No part of this thesis has been submitted for a degree or qualification at any other university.

Julia Raafat Faheem Ramzy Faheem Petro

Signature:			
Date:			

Researcher Data

Name : Julia Raafat Faheem Ramzy Faheem Petro

Date of birth : 20/2/1990

Place of birth : Cairo

Last academic degree : Bachelor of Science

Field of specialization : Design and Production Engineering

University issued the degree : Faculty of Engineering- Ain Shams University

Date of issued degree : 2012

Current job : Demonstrator

Thesis Summary

Designers of modern wind turbines are more interested in stiffer and lighter blade designs as the growth of their size leads to reducing the production costs of electrical energy. The present work introduces a design analysis framework for wind turbines, using a combination of tools specially developed for this purpose. SNL 100-00 is taken as a reference wind turbine blade originally designed by Sandia National Labs. This blade is chosen as a case study to implement the proposed methodology. The first step in the methodology is to model the blade structure using two pre-processing python scripts: (1) Airfoil2BECAS to create a 2D finite element shell model for each crosssection and (2) Shellexpander to generate the input files which are needed by the cross-sectional analysis software BECAS. The cross-sectional properties of the glass fiber-epoxy composite wind turbine blade computed by BECAS are then used as input to the aeroelastic code HAWC2 to conduct aeroelastic analysis and simulate DLCs where HAWCStab2 is used for tuning the controller parameters. The results developed by the proposed methodology are validated against those published by Sandia National Laboratories. Close agreement is observed and hence the proposed methodology can be used to introduce design modifications to improve the blades characteristics. Modifications including (1) changing the slope of the shear webs and (2) the spacing between them are investigated showing good chance of improving the structural and inertial properties of the blade. To evaluate such modifications, comparison against baseline design is conducted using the following metrics: Flapwise and Edgwise loading, tip deflection and cross-sectional properties including: Flapwise and Egdewise bending stiffnesses, axial stiffness, torsional stiffness and mass density.

PSO algorithm is utilized to develop an automatic tool to design optimal structure of wind turbine blades. The developed code is used to solve a benchmark problem and results are validated against published results and also against results obtained using GA toolbox in MATLAB. Finally, the optimization code is combined with the blade's analysis framework presented to find the optimal slope for the shear webs and the optimal spacing distribution. Three variants of the objective function are considered aiming to reduce the mass and increase the stiffness of the blade. The resulting optimized configuration increases the flapwise stiffness normalized by mass density by varying percentages along the span of the blade reaching up to 18% increase and life expectancy increase ranging between 10-75%. This increase is expected to be directly reflected on the blades cost.

Keywords: Structural Optimization, Wind turbine blades, Cross sectional analysis, Finite Element Modeling, Composite structures, Aeroelastic analysis.

Acknowledgment

Praise be to the Lord, for by his grace this work has been completed.

This thesis has been accomplished by the invaluable help, patience and

encouragement of my supervisors, Prof. Adel Elsabbagh and Prof. Wael Akl.

The author would like to especially express gratitude to the inestimable

guidance, support and qualified supervision provided by Prof. Adel Elsabbagh.

The funding provided by ASU-GARDS is greatly appreciated and made this

thesis possible.

Several support activities have been supplied by various engineers of the ASU-

GARDS team, their contribution and assistance are really appreciated and

acknowledged here with gratitude; specially, Eng, Ahmed Barakat.

Special thanks go to my friends Sherif Okda, Aya Adel, Menna Adel, and

Bassant Hany. When the computer analyses seemed to be working against me,

and my mind was too filled with theories, they pulled me out of the office and

into the real world. I really appreciate our trips together.

A special thought goes to my friend, Rana Hemdan. Without you, I would have

never finished this thesis.

Finally, and most importantly, I wish to thank my family for their never-ending

love, support, inspiration and guidance.

Cairo, December 2018

Julia Petro

VII

Table of Contents

1	Lite	rature F	Review	1
	1.1	Introd	uction	1
	1.2	Wind	turbine blades design optimization	2
	1.3	Wind	turbine blades structural design	7
	1.4	Aeroel	lastic modeling of blade structures	9
	1.4.	1 A	erodynamic methods:	9
	1.4.	2 S	tructural dynamics methods:	10
	1.4.	3 F	luid-structure coupling:	11
	1.5	Aeroel	lastic codes for wind turbine	11
	1.6	Cross	sectional analysis codes for wind turbines	13
	1.7	Thesis	limitation	15
	1.8	scope	of work	16
	1.9	Thesis	layout	16
2	Mod	leling a	nd Validation of the blade	17
	2.1	Introd	uction	17
	2.2	Model	ing Methodology	17
2.2.1		1 A	ero-elastic analysis using HAWC2	17
	2.3	Numer	rical Example	31
2.3.1 2.3.2 2.3.3		1 W	Vind Turbine Data	31
		2 V	alidation results and discussion	38
		3 O	Other results which can be calculated by the developed methodol	ogy
3	Blac	de Mod	ifications	46
	3.1	Introdu	uction	46
	3.2	Effect	of shear webs location	46
	3.3	Effect	of shear webs slope	55
4	Opti	imizatio	on model	63
	4.1	Introd	uction	63
	4.2	Algori	thm Description:	63

	4.3	Mathematical Model implementation of PSO:	65
	4.4	Benchmark problem	68
	4.5	Blade structural optimization model	70
	4.5.	Problem formulation	71
	4.5.2	2 Results	76
5	Con	clusions and Future work	81
	5.1	Introduction	81
	5.2	Conclusions	82
	5.3	Future Work	83
6	Refe	erences	84
L	ist of Pi	ublications	90

List of Abbreviations

HAWT Horizontal Axis Wind Turbine

COE Cost of Energy

FEM Finite Element Modeling

BEM Blade Element Momentum theory

IEC International Electro-technical Commission

DLC Design Loading Case

NUMAD Numerical Manufacturing And Design tool

FAST Fatigue, Aerodynamic, Structures and Turbulence

BECAS Beam Cross section Analysis Software

VABS Variational Asymptotic Beam Section Analysis

HAWC2 Horizontal Axis Wind turbine Code 2

PSO Particle Swarm Optimization

GA Genetic Algorithm

MMA Method of Moving Asymptotes

GBA Gradient Based Approach

EA Evolutionary Algorithms

MPI Message Passing Interface

List of symbols

V(z)	Wind velocity profile
V_{hub}	Wind velocity at the hub height
Z_{hub}	Height of the hub measured from the ground
α	Wind shear power law exponent
σ_t	Turbulence longitudinal standard deviation
I_{ref}	Expected value of hub-height turbulence intensity at a 10 min. average wind speed of 15 m/s $$
$V_{ave.}$	Mean value of the wind speed
$V_{ref.}$	Reference wind speed average over 10 min
T	Rise time
$oldsymbol{ heta}_{cg}$	Direction change
V_{gust}	Velocity of gust wind
D	Rotor diameter
Λ_1	Turbulence scale parameter
$ heta_e$	Extreme direction magnitude
V_{e50}	Extreme wind speed with a recurrence period of 50 years
V_{e1}	Extreme wind speed with a recurrence period of 1 years

d	Fraction of chord length increase at the section closest to the root
S	Slope of shear webs spacing linear distribution function
stel	Short term equivalent load
m	Wöhler slope
N_{eq}	Length of simulation in seconds
NeqL	Lifetime equivalent load number
$f_0(\mathbf{x})$	Fitness function
x_j	Design variable j
x_j^L	Lower bound of design variable x_j
x_j^U	Upper bound of design variable x_j
pbest	A particle's personal best experience
gbest	Global best, the best fitness achieved in an iteration
v_i^k	Particle velocity in the k^{th} iteration
x_i^k	Particle position in the k^{th} iteration
W	Inertial weight of a particle's previously attained position
c_1	Cognitive constriction coefficient
c_2	Social constriction coefficient

List of Figures

decades. [1]	3
Figure 2. Cross-section of a blade showing spar caps (black), shear webs (blue	
hatching), core (green hatching), leading and trailing edge reinforcements (red). [1	8]
Figure 3. Structural Definition in HAWC2 workflowError! Bookmark I defined.	10t
Figure 4. Airfoil section coordinates definition	.21
Figure 5. Airfoil section divided into N regions	
Figure 6. SNL 100 m Reference Wind Turbine blade	
Figure 7. 2D Shell model generated by Airfoil2BECAS and imported in ABAQUS	
Figure 8. Chord Schedule for SNL 100 m Blade [18]	
Figure 9. Tower Mass density and Fore-Aft bending stiffness calculated baseline v	
published by SNL	
Figure 10. Tower Torsional and Axial stiffness calculated baseline vs published by	
SNL	
Figure 11. Aerodynamic Power output	.39
Figure 12. Blade Cross-sectional properties comparison against published values i	
SNL reports	.41
Figure 13. 3D Recovered Strains of the section located blade's root	.44
Figure 14. 3D Recovered Stresses of the section located at the blade's root	.45
Figure 15. Modified vs. Original Max. Chord Section	.48
Figure 16. Interpolation function for d=15% of chord length	.48
Figure 17. Modified blade flapwise bending stiffness increase fractions compared	to
baseline design	
Figure 18. Modified blade Edgewise bending stiffness increase fractions compared	b
to baseline design	.49
Figure 19. Modified blade torsional stiffness increase fractions compared to baseli	ne
design	.50
Figure 20. Modified blade axial stiffness increase fractions compared to the baseli	ne
design	.50
Figure 21. Mass per unit Length Increase Fraction with respect to Baseline Design	151
Figure 22. Normalized flapwise bending stiffness at different web spacings	.51
Figure 23. Normalized edgewise bending stiffness at different web spacings	.52
Figure 24. Normalized torsional stiffness at different web spacings	.52
Figure 25. Normalized axial stiffness at different web spacings	.52
Figure 26. Effect of web spacing variation on Flapwise bending moment at the roo	ot
for different design loading cases	.54

Figure 27. Effect of web spacing variation on Edgewise bending moment at the root
for different design loading cases54
Figure 28. Effect of web spacing variation on Tip deflection for different design
loading cases55
Figure 29. Schematic Plan view of the SNL blade showing the shear webs slope55
Figure 30. Modified blade flapwise stiffness increase fractions compared to baseline
design56
Figure 31. Modified blade edgewise stiffness increase fractions compared to
baseline design56
Figure 32. Modified blade torsional stiffness increase fractions compared to baseline
design
Figure 33. Modified blade axial stiffness increase fractions compared to baseline
design
Figure 34. Mass per unit Length Increase Fraction with respect to Baseline Design58
Figure 35. Normalized flapwise stiffness at different shear webs slopes58
Figure 36. Normalized edgewise bending stiffness at different shear webs slopes59
Figure 37. Normalized torsional stiffness at different shear webs slopes59
Figure 38. Normalized axial stiffness at different shear webs slopes59
Figure 39. Effect of webs slope variation on flapwise bending moment at the root for
different design loading cases
Figure 40. Effect of webs slope variation on edgewise bending moment at the root
for different design loading cases61
Figure 41. Effect of webs slope variation on Tip deflection for different design
loading cases
Figure 42. PSO Algorithm flow chart
Figure 43. Cantilever Beam (test problem)
Figure 44. Blade Design Optimization loop
Figure 45. Optimized solution reached through the three formulations presented:
Normalized Flapwise bending stiffness increase with respect to baseline design $\dots 78$
Figure 46. Optimized solution reached through the three formulations presented:
Normalized Edgewise bending stiffness increase with respect to baseline design $\dots 78$
Figure 47. Optimized solution reached through the three formulations presented:
Normalized torsional stiffness increase with respect to baseline design79
Figure 48. Optimized solution reached through the three formulations presented:
Normalized Axial stiffness increase with respect to baseline design79
Figure 49. Aerodynamic power obtained using the optimized blade design80

List of Tables

Table 1. Structural models used in different aeroelastic codes	12
Table 2. Comparison of Cross-sectional analysis codes	15
Table 3. HAWC2 Inputs	
Table 4. IEC Design Loading Cases description	24
Table 5. Basic parameters for standard wind turbine classes	26
Table 6. Airfoil Schedule for SNL 100 m blade	
Table 7. Material Property Data	35
Table 8. Turbine parameters	35
Table 9. Assumed input values	38
Table 10. Published vs. calculated results (values and percentages) for Flapv	wise and
Edgewise Bending moments and tip deflection of the 100 m blade for differ	ent load
cases	40
Table 11. Natural frequencies calculated for the entire turbine system using	HAWC2
Table 12. Fatigue Analysis Results	43
Table 13. Test problem GA defined parameters	69
Table 14. Test problem PSO defined parameters	69
Table 15. Test Problem Results using different Optimization tools	70
Table 16. PSO parameters for Blade Design Optimzation	72
Table 17. Blade Optimization results using PSO	76
Table 18. GA parameters for Blade Design Optimization	77
Table 19. Blade Optimization results using GA	77
Table 20. Fatigue Lifetime Equivalent Damaging Loads comparison	80