

Ain Shams University Faculty of Pharmacy Microbiology and Immunology Department

A Study on Microbial Biotransformation of Caffeic Acid by Some *Candida* species

A Thesis

Submitted for Partial Fulfillment of the Requirements for the

Master's Degree

In Pharmaceutical Sciences

(Microbiology and Immunology)

By

Raghda Abdel Nasser Badawi Singab

Bachelor of Pharmaceutical Sciences, 2013

Demonstrator, Department of Microbiology and Immunology

Faculty of Pharmacy, Ain Shams University

A Study on Microbial Biotransformation of Caffeic Acid by Some *Candida* species

A Thesis

Submitted for Partial Fulfillment of the Requirements for the Master's Degree

In Pharmaceutical Sciences (Microbiology and Immunology)

By

Raghda Abdel Nasser Badawi Singab

Bachelor of Pharmaceutical Sciences, 2013

Demonstrator, Department of Microbiology and Immunology
Faculty of Pharmacy, Ain Shams University

Under Supervision of

Prof. Dr. Nadia Abdel-Halim Hassouna, PhD

Professor of Microbiology and Immunology Faculty of Pharmacy, Ain Shams University

Prof. Dr. Mahmoud Abdel-Megead Yassien, PhD

Professor of Microbiology and Immunology, and Vice Dean for Education and Students Affairs
Faculty of Pharmacy, Ain Shams University

Prof. Dr. Walid Faisal Ahmed Elkhatib, PhD

Professor of Microbiology and Immunology Faculty of Pharmacy, Ain Shams University

Acknowledgement

At first, I thank Allah for granting me the strength and ability to complete this study and for blessing me with many great people who have been my greatest support in both my personal and professional life.

I would like to thank **Prof. Dr. Nadia Hassouna**, Professor and founder of the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University for her support, constructive advice, and continuous guidance during the study.

I would like to express my deepest regards and gratitude to **Prof. Dr. Mahmoud Abdel-Megead Yassien,** Professor of Microbiology and Immunology and Vice Dean for Education and Students Affairs, Faculty of Pharmacy, Ain Shams University for his true guidance, sincere effort and encouragement throughout the work.

I am indebted to **Prof. Dr. Walid Faisal Elkhatib**, Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for his support and valuable discussions throughout the work as well as for suggesting this line of research.

I would like to thank **Prof. Dr. Mohammed Mabrouk Aboulwafa**, Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for providing facilities from the department.

Special thanks to Dr. Nooran Elleboudy, Dr. Ghadir Saied El Housseiny, Dr. Ahmed Essam, Dr. Ahmed Said and my dearest friend, Dr. Hend Abdel Rady, for their great help throughout the work.

I would like to thank **Dr. Saad Moghannem**, Lecturer of Microbiology, Faculty of Science, Department of Botany and Microbiology, Al-Azhar University and **Dr. Mohamed Kalaba**, Lecturer of Microbiology, Faculty of Science, Department of Botany and Microbiology, Al-Azhar University for their help in the antiviral and antifungal assays.

I would like to thank all **my colleagues and workers** in Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University for their continuous help and support during the work.

In addition, I would like to express my eternal heart-felt gratitude to my family members, my father, Prof. Dr. Abdel Nasser Singab, Vice President for Postgraduate Studies and Research Affairs, Ain Shams University, my dear mother, Eng. Maha Elgohary, as well as my brothers and sisters for being the greatest support I could ever get to complete this study.

Finally, a very special thank you goes to **my dear husband** for his continuous support and encouragement. His patience and sacrifice will remain my inspiration throughout my life. My thesis acknowledgement would be incomplete without thanking my baby son, **Yassin**, whose smiling face always made me happy and inspired me. This thesis is dedicated to my family, husband and son.

والحمد لله رب العالمين

Raghda Abdel Nasser Singab

Table of contents

Title	Page
Abstract	1
Introduction	3
Literature review	5
1. Outline of biotransformation	5
2. Types of biocatalysts.	6
2.1. Whole cells	7
2.1.1. Growing cells or resting cells	8
2.1.2. Recombinant or 'designer' biocatalysts	8
2.2. Isolated enzymes	9
3. Advantages of microbial biotransformation	13
4. Naturally occurring phenolic compounds	14
5. Biosynthesis of hydroxycinnamic acid derivatives	17
6. Caffeic acid	19
6.1. Biotransformation of caffeic acid	20
7. Enzymes involved in biotransformation by <i>Candida</i> Species	23
8. Improvement of biotransformation by mutation	23
9. Optimization of the biotransformation process of caffeic acid using response surface methodology	25
10. Immobilization of yeast cells	26
10.1. Immobilization techniques	26
10.1.1. Reversible immobilization techniques	26
10.1.1.1. Adsorption	27
10.1.1.2. Disulphide bonding	27
10.1.1.3. Chelation or metal binding	27
10.1.2. Irreversible immobilization techniques	28
10.1.2.1. Covalent bonding	28
10.1.2.2. Entrapment	28

10.1.2.3. Encapsulation	29
10.1.2.4. Cross-linking	29
Materials and Methods	30
1. Chemicals	30
2. Microorganisms	32
3. Cell lines	32
4. Culture media	33
4.1. Sabouraud's dextrose agar medium	33
4.2. Soybean-yeast extract glucose medium	33
4.3. Mueller-Hinton's agar medium	34
4.4. Mueller-Hinton's agar glucose methylene blue	34
4.5. Selective agar medium for <i>Clostridium difficile</i>	34
4.6. Selective supplement for <i>Clostridium difficile</i>	35
5. Materials for thin layer chromatography	35
6. Buffers, reagents and media for antiviral activity assessment	36
7. Buffers, reagents and media for cytotoxic activity assessment	39
8. Screening of <i>Candida</i> isolates for biotransformation ability	43
8.1. Two-stage fermentation procedure	43
8.2. Extraction	43
8.3. Chromatographic assessment	44
9. Assessment of biological activities of the obtained extracts	44
9.1. Assessment of anti-oxidant activity	44
9.2. Assessment of antibacterial activity	45
9.3. Assessment of antifungal activity	46
9.4. Assessment of antiviral activity	46
9.4.1. Measurement of extract cytotoxicity and antiproliferative activity	
using MTT assay	46
9.4.2. Titration of viruses	47
9.4.3. Antiviral activity	48

9.5. Assessment of cytotoxic activity against cancer cell lines	48
10. Genetic identification of the most promising isolate(s)	49
11. Structure elucidation of the bioactive metabolite(s)	49
11.1. Ultra performance liquid chromatographic analysis	50
11.2. Mass spectrometry	50
12. Standard curve of para-hydroxybenzoic acid	50
13. Adopting different approaches for strain improvement	51
13.1. Improvement of strain activity by Gamma irradiation	51
13.2. Screening of the selected colonies for their caffeic acid biotransformation ability.	52
14. Model-based optimization of biotransformation of caffeic acid	52
14.1. Preliminary studies	52
14.1.1. Effect of carbon sources	52
14.1.2. Effect of nitrogen sources	53
14.1.3. Effect of added metal ions	53
14.2. Response surface methodology experimental design for	
optimization of biotransformation of caffeic acid	53
15. Immobilization of the yeast cells	54
Results	55
1. Screening of <i>Candida</i> isolates for biotransformation ability	55
2. Nuclear magnetic resonance (NMR) analysis	57
2.1. Standard caffeic acid and media extract	57
2.2. NMR analysis of the methanolic extracts of different isolates after	
treatment with caffeic acid	57
3. Assessment of biological activities of the obtained extract	62
3.1. Assessment of anti-oxidant activity	62
3.2. Assessment of antimicrobial activity	63
3.2.1. Assessment of antibacterial activity	63
3.2.2. Assessment of antifungal activity	65

3.2.3. Assessment of antiviral activity	65
3.2.3.1. Cytotoxicity of crude extracts using MTT assay	65
3.2.3.2. Antiviral activity of crude Extracts Using MTT assay	66
3.3. Assessment of cytotoxic activity against cancer cell lines	66
4. Genetic identification of the most promising isolate(s)	69
5. Structural Elucidation of the bioactive metabolite(s)	69
6. Improvement of strain activity by Gamma irradiation	70
7. Model-based optimization of biotransformation of caffeic acid	70
7.1. Effect of some nitrogen sources, carbon sources and added metal ions	70
7.2. Response surface methodology experimental design for optimization of biotransformation of caffeic acid	72
8. Immobilization of the yeast cells	77
Discussion	78
Summary	92
References	95
Appendix	119
Arabic Summary	

List of Abbreviations

Abbreviation	Definition
ANOVA	Analysis of variance
ATCC	American Type Culture Collection
BLAST	Basic Logic Alignment Search Tool
CD_{50}	Cytotoxic dose 50
CLSI	Clinical and Laboratory Standard Institute
Cox-B4	Coxsackie virus type B4
CPE	Cytopathic effect
CV	Coefficient of variation
DDD	Double distilled deionized
DMF	Dimethylformamide
DMSO	Dimethylsulfoxide
DPPH	2,2-diphenyl-1-picrylhydrazyl
EDTA	Ethyleneiaminetetraacetic acid
EMEM	Eagle's minimum essential medium
FBS	Fetal bovine serum
GMB	Glucose methylene blue
HAV-H10	Hepatitis A virus type H-10
HCV	Hepatitis C virus
HDAC	Histon deacetylase
HIV	Human Immunodeifiency Virus
HSV-1	Herpes Simplex virus type 1
Kgy	Kilo Gray
LC-ESI-MS	Liquid chromatography coupled with electrospray
	ionization mass spectroscopy
MEM	Minimum essential medium
MNTC	Maximum Nontoxic Concentration

MTT	(3-(4,5-Dimethylthiazol-2-yl)-
	2,5-Diphenyltetrazolium Bromide)
NCBI	National Centre for Biotechnology Information
OD	Optical density
PAL	Phenylalanine ammonia-lyase
PBS	Phosphate buffered saline
PFU	Plaque forming unit
ppm	Parts per million
RPMI	Roswell Park Memorial Institute
RSM	Response surface methodology
SDA	Sabouraud's dextrose agar
TCID ₅₀	Tissue culture infectious dose 50
TLC	Thin Layer chromatography
UPLC	Ultra performance liquid chromatography
v/v	Volume/volume
w/v	Weight/volume

List of Tables

Table No.	Title	Page
Table 1:	Some milestones of industrially relevant biotransformation	10
Table 2:	The twelve principles of Green Chemistry, as proposed by Anastas and Warner.	11
Table 3:	Most common derivatives of hydroxycinnamic acids	16
Table 4:	Different chemicals used throughout this study and their sources.	30
Table 5:	The DPPH scavenging capacity (%) of crude extracts compared to ascorbic acid and caffeic acid	62
Table 6:	Antibacterial activity of crude extracts against bacterial standard strains	64
Table 7:	The maximum nontoxic concentrations of crude extracts	65
Table 8:	The protection percentage of crude extracts	66
Table 9:	Observed, predicted, and residual values for optimization of process parameters for biotransformation of caffeic acid by the mutant strain of <i>C. albicans</i> CI-24 using response surface methodology.	73
Table 10:	ANOVA of the first order model for the optimization of process parameters for biotransformation of caffeic acid by the mutant strain of <i>C. albicans</i> CI-24 using response surface methodology.	73
Table 11:	Coefficient estimates, standard errors, F-values and p-values of model terms for the optimization of process parameters for biotransformation of caffeic acid by the mutant strain of <i>C. albicans</i> CI-24 using reponse surface methodology	74

List of Figures

Figure No.	Title	Page
Figure 1:	The hydroxylation of progesterone by the fungus Rhizopus	
	arrhizus	13
Figure 2:	Hydrolysis of nitrile group by <i>Rhodococcus</i>	14
Figure 3:	Classification of phenolic compounds	15
Figure 4:	Shikimate pathway metabolism	18
Figure 5:	Caffeic acid structure	19
Figure 6:	Biotransformation of caffeic acid by the roots of Capsicum	
	frutescens	21
Figure 7:	Biotransformation of caffeic acid by Streptomyces coelicolor and	
	Aspergillus niger	22
Figure 8:	Caffeic acid metabolites.	22
Figure 9:	Para-hydroxybenzoic acid standard curve	51
Figure 10:	TLC Chromatograms of seven Candida isolates showed abilities	
	to biotransform caffeic acid	56
Figure 11:	¹ H NMR spectrum of caffeic acid	58
Figure 12:	¹ H NMR spectrum of extract CI-24	58
Figure 13:	¹ H NMR spectrum of extract CI-9	59
Figure 14:	¹ H NMR spectrum of extract CI-2	59
Figure 15:	¹ H NMR spectrum of extract CI-61	60
Figure 16:	¹ H NMR spectrum of extract CI-4	60
Figure 17:	¹ H NMR spectrum of extract CI-14	61

Figure 18:	¹ H NMR spectrum of extract CI-107	61
Figure 19:	Dose response curve of extract CI-24	67
Figure 20:	Dose response curve of extract CI- 2	67
Figure 21:	Dose response curve of extract CI-107	68
Figure 22:	Cytotoxic activities (expressed as CD ₅₀) of extracts CI-24, CI-2, and CI-107 against Caco-2 cell line	68
Figure 23:	Para-hydroxy benzoic acid structure	69
Figure 24:	MS profile of para-hydroxy benzoic acid under the ESI negative scan mode	69
Figure 25:	MS profile of para-hydroxy benzoic acid under the ESI positive scan mode.	70
Figure 26:	Effect of some carbon sources on biotransformation of caffeic acid by the mutant strain of <i>C. albicans</i> CI-24	71
Figure 27:	Effect of some nitrogen sources on biotransformation of caffeic acid by the mutant strain of <i>C. albicans</i> CI-24	71
Figure 28:	Effect of some added metal ions on biotransformation of caffeic acid by the mutant strain of <i>C. albicans</i> CI-24	72
Figure 29:	Perturbation plot showing the effect of each of the independent variables for the optimization of biotransformation of caffeic acid by the mutant strain of <i>C. albicans</i> CI-24	75
Figure 30a:	3D Response surface plot showing the effect of interaction between incubation temperature (°C), initial pH of biotransformstion medium on biotransformation of caffeic acid.	76

Figure 30b:	3D Response surface plot showing the effect of interaction	
	between incubation temperature (°C) and agitation rate (rpm) on	
	biotransformation of caffeic acid	76
Figure 30c:	3D Response surface plot showing the effect of interaction between initial pH of biotransformstion medium (°C) and	
	agitation rate (rpm) on biotransformation of caffeic acid	76

Abstract

A total number of 92 clinical isolates of *Candida* species was utilized to perform caffeic acid biotransformation using two stage fermentation procedure. After 5 days of incubation, the cell free supernatants were collected and extracted using ethylacetate: n-butanol (9:1).

The success of biotransformation process was checked by TLC autography method and confirmed by nuclear magnetic resonance. The obtained results showed that 7 isolates could perform caffeic acid biotransformation.

The biological activities (antioxidant, antibacterial, antifungal, antiviral, and cytotoxic activities) of the obtained extracts were determined. According to the obtained results, the extract of isolate CI-24 had the most promising biotransformation ability. It had potential antibacterial activity against *Staphylococcus aureus* in addition to promising cytotoxic activity against Caco-2 cell line. As determined by LC-MS, caffeic acid was transformed by isolate CI-24 into para-hydroxy benzoic acid.

The isolate was genetically identified as *Candida albicans* (accession number MH356583) using 28S rRNA gene sequencing. The biotransformation ability of *C. albicans* CI-24 was improved through mutation by Gamma irradiation. Treatment with a dose of 5 Kilo Gray (KGy) resulted in 99.99% kill as determined by counting the survivors. The screening experiments showed that one mutant showed about 2.8 fold increase in para-hydroxybenzoic acid concentration when compared to the wild type.

In addition, response surface methodology experimental design (RSM) was used for optimization of physiological (nitrogen source) and environmental (temperature, initial pH, and agitation) factors. The main goal of applying RSM was to pinpoint efficiently for the optimum values of the process parameters to maximize the biotransformation process. The maximum para-hydroxybenzoic acid concentration (7.47 mg/ml) was obtained in a fermentation medium