Ain Shams University
Faculty of Science
Geophysics Department

Geophysical studies in East Abu Gharadig Basin, Western Desert, Egypt Utilizing Seismic Interpretations and Well Logging Analysis.

A Thesis submitted in Partial Fulfillment for the Requirements of Master Degree of Science in Geophysics

By

Fatma ElZahraa ElSadek ElSayed ElSadek

(B. Sc. in Geophysics, Faculty of Science Ain Shams University, 2011)

Supervised by

Prof. Dr. Abdullah Mahmoud El Sayed Mahmoud

Professor of Geophysics,

Geophysics department, Faculty of Science – Ain Shams University

Dr. Azza Mahmoud Abd El-Latif El-Rawy

Lecturer of Geophysics, Geophysics department, Faculty of Science – Ain Shams University

Dr. William Bosworth

Senior geological advisor, Apache Egypt

To

Geophysics Department
Faculty of Science
Ain Shams University
Cairo
2018

SUPERVISORS

Prof. Dr. Abdullah Mahmoud El Sayed Mahmoud

Professor of Geophysics,

Geophysics Department,

Faculty of Science-Ain Shams University

Dr. Azza Mahmoud Abd El-Latif El-Rawy

Lecture of Geophysics,

Geophysics Department,

Faculty of Science-Ain Shams University

Dr. William Bosworth

Senior geological advisor,

Apache Egypt

NOTE

The present thesis is submitted to Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work, which is materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1-Geophysical Field Measurements.
- 2- Numerical Analysis and Computer Programming.
- 3- Elastic Wave Theory.
- 4- Seismic Data Acquisition.
- 5- Seismic Data Processing.
- 6- Seismic Data Interpretation.
- 7- Earthquake Seismology.
- 8- Engineering Seismology.
- 9- Deep Seismic Sounding.
- 10- Structure of the Earth

She successfully passed the final examinations in those courses. Concerning the language requirement of the degree, He also passed the final examination of a course in English language.

> Head of Geophysics Department Prof. Dr. Samy Hamed Abd El-Naby

ACKNOWLEDGMENTS

Firstly, my sincerest gratitude and praise is for Almighty God, Allah, who guided and blessed me during the preparation of this work.

I would like to express my special thanks and heartfelt appreciation to my committee chair **Prof. Dr. Abdullah Mahmoud El Sayed Mahmoud,** professor of Geophysics, Faculty of Science, Ain Shams University for his supervision, scientific advice and critical reading and reviewing all the work and whom I was lucky and honored to work under his supervision.

I would like to thank and express my profound gratitude and deep appreciation to **Dr. Azza Mahmoud Abd El-Latif El-Rawy**, lecture of Geophysics, Faculty of Science, Ain Shams University, for prominent guidance and support throughout my research, following the work, reading and reviewing the main scripts.

I would like to express my deepest gratitude and great appreciation to **Dr. William Bosworth** for his endless guidance and support throughout my research. He continually conveys a spirit of work concerning research, and an enthusiasm for teaching and guiding.

I would like to thank **Apache Egypt** for supporting my research and providing me with the study data and **The EGPC** for permission to use subsurface data of the study area

This work is dedicated to my family who has been always supporting me. Special thanks and dedication must go to My Mum, Husband and Son— above all beings on earth, for the unconditional support, encouragement, prayers and devotion kept me going.

ABSTRACT

Abu Gharadig Basin comprises many of the most productive oil and gas fields in the northern part of Western Desert. Many discoveries have confirmed the economic potential of this province, such as East Bahariya Concession, in which the area of interest in the present study is located. The study area; Amana Field is located in the western part of East Bahariya Concession. It is bounded by latitudes 29° 30' 15" N and Y9° TT' 0\" N and by longitudes 29° 29' 15" E and 29° 23' 40" E.

The main purpose of this study is aimed to evaluate East Bahariya Concession, especially Amana Field to provide a detailed study for the field, elucidate the subsurface geologic setting and clarify the structural elements of the study area. This study is based on the analysis of the available 3D seismic cube and well log data sets by studying the subsurface geologic structural features and the main potential reservoir markers (Abu Roash "G" Member and Bahariya Formation).

To achieve this objective, the current study started with detailed description of the geological setting of the area including discussion of stratigraphic sequence and structure of the north Western Desert, where Amana Field is located, through a review for the pervious geological studies. Then, detailed 3D seismic data interpretation was carried out in terms of horizon and fault identification to provide accurate information about the subsurface structural geometry and fault pattern of the study area. Then, 3D structure model has been built to develop a structure model of reservoir rock in the study area. Then, petrophysical evaluation of the interested reservoirs is carried out through analyzing the well logging data of the available boreholes. Finally, regional subsurface geological history and 3D seismic data interpretation was integrated with well logging data analysis to study the depth configuration and structural framework of the interested reservoir markers. The integrated geological and geophysical data supported detecting the best promising prospects for further exploration and development activities.

The representative elements of petroleum system include essentially source type, reservoir facies, seals and entrapment mechanism to form an effective trap. These elements of petroleum system were evaluated and new prospect areas were detected for further exploration and development work in Amana Field with respect to the seismic structural highs and suitability of petrophysical parameters in Abu Roash "G" Member and Bahariya Formation reservoirs.

The present geophysical and geological study disclosed that Amana Field represents a positive prospect due to presence of structural petroleum elements. They revealed that the structural geology of the area was affected by tectonic deformation system caused regional uplift (high structure) at the northwestern part of the study area. The principal structure responsible for the hydrocarbon entrapment in the study area was high structure corresponding to three-way dip closure of NW-SE normal dip slip faults that was very obvious on seismic sections, structure maps and 3D structure model.

Keywords: Amana Field, 3D Seismic interpretation, Petrophysical properties, 3D Structure modeling, Promising prospects.

List of Contents

<u>Subject</u>	<u>Page</u>
Acknowledgments	i.
Abstract	ii.
List of Content	iv.
List of Figures	ix.
List of Tables	xiv.
List of Abbreviations	XV.
Chapter 1: INTRODUCTION	1
1.1 Introduction	2
1.2 Location of the Study Area	2
1.3 Objective of the Present Study	4
1.4 Available Data for the Study Area	5
1.5 Methodology	6
1.6. Exploration History of East Bahariya Concession	7
Chapter 2: GENERAL GEOLOGICAL SETTING	11
2.1 Introduction	12
2.2 Surface Geology	13
2.3 Subsurface Stratigraphic Geology	14
2.3.1 Pre-Cambrian Basement	17
2.3.2 Paleozoic rock Units	17
2.3.2.1 Cambrian-Ordovician	17
2.3.2.2 Silurian	18
2 3 2 3 Devonian	18

2.3.2.4 Carboniferous	19
2.3.2.5 Permian	19
2.3.3 Mesozoic Rock Units	20
2.3.3.1 Triassic Rock units	20
2.3.3.2 Jurassic Rock units	20
2.3.3.3 Cretaceous Rock units	22
2.3.3.3.1 Lower Cretaceous Rock units	22
2.3.3.3.2 Upper Cretaceous Rock units	23
2.3.4 Cenozoic Rock Units	28
2.3.4.1 Paleocene-Lower and Middle Eocene	29
2.3.4.2 Upper Eocene-Oligocene	30
2.4 Structural Setting	31
2.4.1 Abu Gharadig Basin Structural Setting	35
2.5 Tectonic Setting	38
Chapter 3: SEISMIC DATA INTERPRETATION	43
3.1 Introduction	44
3.2 Available Data	46
3.2.1 Seismic Acquisition Parameters	47
3.2.2 Seismic Processing Sequence	48
3.3 Seismic Data Interpretation Work Flow	49
3.3.1 Well to Seismic Tie	50
3.3.1.1 Synthetic Seismogram	51
3.3.2 Seismic Data Interpretation	52
3.3.2.1 Horizon Interpretation	54
3.3.2.2 Fault Interpretation	55

3.3.2.2.1 Conventional Method for Fault Interpretation	55
3.3.2.2.2 3D Seismic Attributes for Fault Interpretation; Coherence	
(Variance) Cube	64
3.4 Mapping Interpretation	71
3.4.1 Two-Way Time Structure Maps	71
3.4.2 Average Velocity Distribution Maps	76
3.4.3 Depth Structure Maps	80
3.5 3D Structural Modeling	85
3.5.1 Work Flow of the 3D Structural Modeling	85
3.5.1.1 Fault Modeling	86
3.5.1.2 Pillar Gridding	87
3.5.1.3 Make Horizons	90
3.5.1.4 Make Zone	91
3.6 Tectonic Inference of the Study Area	92
Chapter 4: WELL LOG ANALYSIS	94
4.1 Introduction	95
4.2 Available Data	96
4.3 Work Flow	97
4.3.1 Pre-Computations Qualitative Correlation	99
4.3.1.1 Determination of Formation Temperature	99
4.3.1.2 Determination of Formation Water Resistivity	101
4.3.2 Qualitative Correlation	109
4.3.3 Quantitative Analysis	111
4.3.3.1 Determination of shale volume	111
4 3 3 1 1 Single curve shale indicator	113

4.3.3.1.2 Double curve shale indicator	114
4.3.3.2 Determination of formation porosity	120
4.3.3.2.1 Sonic porosity	124
4.3.3.2.2 Density porosity	123
4.3.3.2.3 Neutron porosity	124
4.3.3.2.4 Combination Neutron-Density porosity	124
4.3.3.3 Determination of fluid saturations	126
4.3.3.3.1 Water saturations Determination	126
4.3.3.3.2 Hydrocarbon saturations Determination	129
4.3.3.4 Reservoir cut-off Parameters and Summary	130
4.3.3.4.1 (Amana_1X) Well	134
4.3.3.4.2 (Amana_E_1) Well	137
4.3.3.4.3 (Farasha_1X) Well	140
4.3.3.4.4 (Yamama_1X) Well	143
4.3.3.5 Identification of Reservoir Lithology	146
4.3.4 Lateral Distribution of Petrophysical Parameters	154
4.3.4.1 Shale Percentage Map	155
4.3.4.2 Effective Porosity Map	158
4.3.4.3 Water Saturation Map	160
4.3.4.4 Hydrocarbon Saturation Map	162
4.4 Conclusion	164
Chapter 5: Petroleum System and Hydrocarbon Potentiality	165
5.1 Introduction	166
5.2 Hydrocarbon system	167
5.2.1 Source Rocks	168
5.2.2 Maturation	170

5.2.3 Reservoir Rocks	171
5.2.3.1 Abu Roash "G" Sandstone	172
5.2.3.2 Bahariya Sandstones	172
5.2.4 Migration	174
5.2.5 Trapping	175
5.2.6 Seal Rocks	176
5.3 Prospect Detection	178
Chapter 6: Summary and Conclusion	182
Summary and Conclusion	183
Reference	197
Arabic Summary	