Ain Shams University Faculty of Science Chemistry Department

Effect of inclusion in cyclodextrin nanocavities on the excited state proton transfer of photoacids.

A Thesis

Submitted for the Degree of Master of Science As Partial Fulfillment for Requirements of Master of Science "Chemistry Department"

By

Aya Said Ibrahim Amer

B.Sc. in Major Chemistry, Faculty of Science, Ain Shams University

2013

Under Supervision of

Prof. Dr. Ayman Ayoub Abdel Shafi

Professor of Inorganic and photochemistry, Faculty of Science, Ain Shams University

Dr. Gehad Mohamed Attia

Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University

2018

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet

Effect of inclusion in cyclodextrin nanocavities on the excited state proton transfer of photoacids.

By

Aya Said Ibrahim Amer

B.Sc. in Major Chemistry, Faculty of Science
Ain Shams University

2013

This thesis for Master degree has been approved by:

Prof. Dr. Ayman Ayoub Abdel Shafi

Professor of Inorganic and photochemistry, Faculty of Science, Ain Shams University

Dr. Gehad Mohamed Attia

Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University

Head of Chemistry Department **Prof. Dr. Ibrahim Hussainy Ali Badr**

Ain Shams University Faculty of Science Chemistry Department

Student Name: Aya Said Ibrahim Amer

Scientific Degree: M.Sc.

Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 2013

Granting Year: 2018

<u>Acknowledgment</u>

First and last thanks to Allah who give me the power to go forward in a way illuminated with his merciful guidance.

I would like to express my thanks to **Prof. Dr. Ayman**Abdel Shafi, Professor of Inorganic and photochemistry,
Faculty of Science, Ain Shams University, for giving me
the chance to be one of his students and for his generous
advices, valuable discussions, useful guidance effective
contributions, who helping me greatly, and gave me the
confidence to express my ideas freely.

Dr. Gehad Mohamed Attia, Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University, for giving me the chance to be one of his students and for his generous advices.

Aya Saíd Amer

Contents

List of Figu	ıresiii
List of Tab	lesv
List of sym	bols vi
List of Abb	previationsix
Aim of Wo	rk xi
Summary	xii
Chapter I	1
1. Introd	uction 1
1.1 Ph	nenomenon of fluorescence
1.1.1	Jablonski Diagram
1.1.2	The Stokes Shift4
1.1.3	Fluorescence quantum yield6
1.2 Ti	me-resolved fluorescence lifetime measurements 8
1.2.1	The fluorescence decay 8
1.3 In	troduction of photoacids
1.3.1	Photoacids and photobases
1.3.2	Photoacidity
1.3.3	Excited state proton transfer (ESPT)
1.3.4	Förster cycle
1.3.5	Solvent effects on Photoacidity
1.4 Cv	yclodextrins

	1.4	.1 CD Inclusion Complexes	31
	1.4	.2 Applications of Cyclodextrins:	33
Cł	apte	er II	42
2	Ins	strumentation and methods	42
	2.1	UV-visible spectroscopy	42
	2.2	Photoluminescence	42
,	2.3	Photoluminescence lifetime	42
	2.4	Chemicals	42
Cł	apte	er III	44
3	Res	sults and Discussion	44
	3.1	Effect of solvents on the Photophysical properties of 1NO	4S 44
	3.2	Photophysical properties and solvent parameters	49
	3.3	Photophysical properties and linear solvation	energy
]	relati	ionships	53
	3.3	.1 Kamlet-Taft model	54
	3.3	.2 Catalán model	63
	3.3	Laurence model	72
	3.4	Effect of Inclusion in cyclodextrin derivatives o	n the
	Photo	ophysical	81
	3.4	Absorption and Fluorescence Spectra	81
	3.5	Conclusion	99
4	Ref	ferences	100

List of Figures

Figure 1.1: One form of a Jablonski diagram. 2
Figure 1.2: One form of a Jablonski diagram
Figure 1.3: Absorption and fluorescence emission spectra of 2-naphthol in
neutral H ₂ O
Figure 1.4: Frontier orbitals of (a) 2-naphthol and (b) 2-naphtholate anion.
Figure 1.5: Energy diagram of the proton transfer reaction related to the
Förster cycle
Figure 1.6: β-Cyclodextrin: Top view of the Stuart molecular model (left) and
structure (right)
Figure 1.7: Top: Functional structural scheme of α -CD (n = 6), β -CD (n = 7),
and γ -CD (n = 8). Bottom: Geometric dimensions of cyclodextrins
Figure 3.1: Absorption of spectra of 20 mM 1NO4S in different solvents . 44
Figure 3.2: Normalized fluorescence emission spectra of 1NO4S in different
solvents collected with excitation wavelength, $\lambda_{ex},$ equals to $\lambda_{abs}^{max}45$
Figure 3.3: Fluorescence decay profiles of 1NO4S in different solvents
collected with 297 nm LED as excitation source
Figure 3.4: Plot of Stokes shift ($\Delta \nu$) versus E_N^T
Figure 3.5: Kamlet-Taft linear solvation energy relationship plot of the
calculated values of ν_a against their corresponding experimental data 56
Figure 3.6: Kamlet-Taft linear solvation energy relationship plot of the
calculated values of v_f against their corresponding experimental data 57
Figure 3.7: Kamlet-Taft linear solvation energy relationship plot of the

Figure 3.8: Kamlet-Taft linear solvation energy relationship plot of the
calculated values τ_1 against their corresponding experimental data 59
Figure 3.9: Kamlet-Taft linear solvation energy relationship plot of the
calculated values τ_2 against their corresponding experimental data 60
Figure 3.10: Catalán's linear solvation energy relationship plot of the
calculated values of ν_a against their corresponding experimental data 67
Figure 3.11: Catalán's linear solvation energy relationship plot of the
calculated values of ν_f against their corresponding experimental data 68
Figure 3.12: Catalán's linear solvation energy relationship plot of the
calculated values of $\Delta\nu$ against their corresponding experimental data 69
Figure 3.13: Catalán's linear solvation energy relationship plot of the
calculated values of τ_1 against their corresponding experimental data 70
Figure 3.14: Catalán's linear solvation energy relationship plot of the
calculated values of τ_2 against their corresponding experimental data71
Figure 3.15: Laurence's linear solvation energy relationship plot of the
calculated values of ν_a against their corresponding experimental data 74
Figure 3.16: Laurence's linear solvation energy relationship plot of the
calculated values of $\nu_{\rm f}$ against their corresponding experimental data75
Figure 3.17: Laurence's linear solvation energy relationship plot of the
calculated values of $\Delta\nu$ against their corresponding experimental data 76
Figure 3.18: Laurence's linear solvation energy relationship plot of the
calculated values of τ_1 against their corresponding experimental data 77
Figure 3.19: Laurence's linear solvation energy relationship plot of the
calculated values of τ_2 against their corresponding experimental data 78
Figure 3.20: Structure and abbreviation of cyclodextrin derivatives studied
Figure 3.21: Effect of different concentrations of α -CD on the fluorescence
spectrum of 20 μ M of 1NO4S, $\lambda_{ex} = \lambda_{abs}^{max}$.

Figure 3.22: Effect of different concentrations of β – CD on the fluorescence
spectrum of 20 μ M of 1NO4S, $\lambda_{ex} = \lambda_{abs}^{max}$.
Figure 3.23: Effect of different concentrations of γ -CD on the fluorescence
spectrum of 20 μ M of 1NO4S, $\lambda_{ex} = \lambda_{abs}^{max}$.
Figure 3.24: Effect of different concentrations of HP-β-CD on the
fluorescence spectrum of 20 μM of 1NO4S, $\lambda_{ex} = \lambda_{abs}^{max}$
Figure 3.25: Effect of different concentrations of Me-β-CD on the
fluorescence spectrum of 20 μM of 1NO4S, $\lambda_{ex} = \lambda_{abs}^{max}$
Figure 3.26: The Benesi-Hildbrand plot of $1/(I_f-I_f^0)$ vs $1/[CD]$
Figure 3.27: Fluorescence decay traces of 1NO4S at different added
concentrations of α-CD.
Figure 3.28: Fluorescence decay traces of 1NO4S at different added
concentrations of β-CD. 91
Figure 3.29: Fluorescence decay traces of 1NO4S at different added
concentrations of Me-β-CD.
Figure 3.30: Fluorescence decay traces of 1NO4S at different added
concentrations of HP-β-CD
Figure 3.31: Fluorescence decay traces of 1NO4S at different added
concentrations of γ – CD
Figure 3.32: Changes in the amplitudes a_1 and a_2 as a function of different
cyclodextrin concentrations. 95
Figure 3.33: Plot for the determination of the association constants (K^T) using
time resolved fluorescence emission (a ₁ and a ₂)

List of Tables

Table 1.1: Rate constant of each photochemical process
Table 1.2: Recommended fluorescence quantum yield references in various
emission ranges
Table 1.3: Ground and excited state acidities of some naphthol derivatives.
Table 1.4: The pK_a and pK_a^* of some common photoacids
Table 3.1: Wavelength of maxima absorption λ_{abs} of the ${}^{1}L_{a}$ and ${}^{1}L_{b}$ peaks,
fluorescence emission maximum, $\lambda_{em},\ fluorescence$ quantum yield, $\Phi f,$
excited state lifetimes τ_1 and $\tau_2~$ and their amplitudes (a_1 and a_2) of 1NO4S
in different solvents (Errors are $\leq 10\%$)
Table 3.2: Solvent parameters of Kamlet-Taft model which is used in the
multiple regression analysis. 55
Table 3.3: Results of the multiple regression analysis of Kamlet-Taft model.
62
Table 3.4: Solvent parameters of Catalán model which is used in the multiple
regression analysis
Table 3.5: Results of the multiple regression analysis of Catalán model 66
Table 3.6: Solvent parameters of Laurence model which is used in the
multiple regression analysis
Table 3.7: Results of the multiple regression analysis of Laurence model 80

List of symbols

Symbol	Scientific meaning
A	Absorbance
hν	Energy
АН	Brønsted acid
В	Brønsted base
BH+	Conjugate acid
A ⁻	Conjugate base
$k_{ m IC}$	Internal conversion rate constant
k_{ISC}	Inter system crossing rate constant
$k_{ m F}$	Fluorescence rate constant
$k_{ m P}$	Phosphorescence rate constant
$k_{ m ext}$	Excitation rate constant
ν_a	Absorption energy
$\nu_{ m F}$	Fluorescence energy
Δν	Stokes shift
I _o	Intensity of fluorescence decay at zero time
I(t)	Intensity of fluorescence decay at any time
ε	Dielectric constant

a, b, p, s, d, di and e	Susceptibility constants
D	Guest molecule
I_f , I_f^o	Fluorescence intensity in the presence and absence of cyclodextrin
I _C	Fluorescence intensity of the guest-CD complex
$\mu_{\rm g}$ / $\mu_{\rm e}$	Ground state and excited state dipole moment
$k_{ m r}$	Radiative rate constant
$k_{ m nr}$	Non-radiative rate constant
$k_{ m q}$	Quenching rate constant
ΔH (*)	Enthalpy changes in the ground (excited) state
ΔG (*)	Free energy changes in the ground (excited) state
ΔS	Entropy change
N _A	Avogadro's number
ν	Frequency
h	Planck's constant
n	Refractive index
p <i>K</i> _a (*)	Ground(excited) state acidity constant
R	Universal gas constant
T	Temperature in Kelvin
<i>K</i> _a (*)	Ground (excited) state equilibrium dissociation constant
R0 ^{-*}	Excited-state anionic photoacid

$E_{ m T}^{ m N}$	Solvent polarity parameter
Δf	Field factor
ROH*	Excited-state neutral photoacid
λ	Wavelength
λ_{abs}^{max}	Maximum wavelength in the absorption spectrum
$\lambda_{abs}, \lambda_{em}$	Absorption and emission wavelength
t	Time
τ	Excited state fluorescence lifetime in presence of quencher
Φ_{F}	Fluorescence quantum yield
pK _a	Acid dissociation constant
$^{1}L_{b,}$ $^{1}L_{a}$	The first two electronic transitions of phenol and phenolate ion
S_0	Electronic ground singlet state
S ₁	The first excited singlet state
T_1	The first excited triplet state
α	Hydrogen bond donating power of the solvent
β	Hydrogen bond accepting power of the solvent
π*	Solvent polarity/polarizability effect
$f_{ m i}$	Relative integrated fluorescence Intensity
ai	Amplitude
$k_{\mathrm{p}},\ k_{\mathrm{p}}^{*}$	The ground and excited state protonation rate constants

List of Abbreviations

Abbreviation	Scientific Name
1NO	1-naphthol
1NO4S	1-naphthol-4-sulfonic acid, Na salt
2NO	2-naphthol
5CN2NO	5-cyano-2-naphthol
DMSO	Dimethylsulfoxide
ESPT	Excited-state proton transfer
ESI _{er} PT	Excited-state intermolecular proton transfer
PT	Proton transfer
SA	Solvent's acidity
SB	Solvent's basicity
SdP	Solvent dipolarity
SP	Solvent polarizability
DI	Dispersion and induction interaction
ES	Electrostatic interaction
KT	Kamlet-Taft
S	Slope
LSERs	Linear solvation energy relationships
EtOH	Ethanol

EWG	Electron withdrawing group
FLT	Fluorescence lifetime
НОМО	Highest occupied molecular orbital
HPLC	High-performance liquid chromatography
ICT	Intramolecular charge transfer
IRF	Instrument response function
МеОН	Methanol
MLCs	Metal-ligand complexes
NMR	Nuclear magnetic resonance
LED	Light emitting diode
LUMO	Lowest unoccupied molecular orbital
PTTS	Proton transfer to solvent
TCSPC	Time-correlated single photon counting
UV-vis	Ultraviolet-visible