Expression of G Protein-Coupled Receptor 56 (GPR56) in Acute Myeloid Leukemia

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

By

Mai Abdel Latif Ahmed Rashad MB,BCh.

Faculty of Medicine- Ain Shams University

Supervised by

Professor/ Hanaa Mohammad El-Sayed Afifi

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Rasha Abd El- Rahman El-Gamal

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Haitham Mohammed Mohammed Abdelbary

Lecturer of Internal Medicine & Clinical Hematology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, I would like to express my deep gratitude to **GOD** for his care and generosity throughout my life and for giving me strength to complete this work.

It is of great honor to express my deep gratitude and my sincere appreciation to **Prof. Dr. Ibanaa**Mohammad El-Sayed Afifi, Professor of Clinical Hematology, Faculty of Medicine, Ain Shams University for her keen supervision and guidance and her overwhelming support that has been of great help throughout this work.

I am extremely grateful to Asst. Prof. Dr. Rasha Abd El-Rahman El Gamal, Assistant Professor of Clinical Hematology, Faculty of Medicine, Ain Shams University for her great support & effort. It has been an honor to work with her.

I am thankful to **Dr. Haitham Mohammed Mohammed Abdelbary,** Lecturer of Internal
Medicine and Clinical Hematology, Faculty of Medicine,
Ain Shams University for his great support throughout
this work.

Last but not least, I would like to dedicate this effort to my family, husband and kids for their continuous encouragement and for pushing me forward.

Mai Abdel Jațif Ahmed

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	8
Introduction	1
Aim of the Work	3
Review of Literature	
Acute Myeloid Leukemia	4
G protein Coupled Receptors (GPCRs)	35
Subjects and Methods	45
Results	51
Discussion	71
Summary	79
Conclusion	82
Recommendations and Future Directions	83
References	84
Master Sheet	103
Arabic Summary	

List of Eables

Table No	. Title Page	No.
Table (1):	Morphologic (FAB) classification of AML	10
Table (2):	WHO classification of AML	12
Table (3):	Expression of cell-surface and cytoplasmic markers for the diagnosis of AML and MPAL.	18
Table (4):	Frequent cytogenetic abnormalities in AML and clinical correlations	21
Table (5):	Prognostic factors in AML	23
Table (6):	Prognostic-risk group based on cytogenetic and molecular profile	26
Table (7):	Demographic data of the studied group	51
Table (8):	Clinical picture of the studied AML patients	52
Table (9):	Hematological data of the studied AML patients	53
Table (10):	Biochemical data of the studied AML patients	54
Table (11):	Immunophenotypic data of studied AML patients	55
Table (12):	FAB subtypes and cytogenetics of participating patients	
Table (13):	Response to treatment at day 28 and outcome of studied AML patients	57
Table (14):	GPR56 expression and MFI according to different variables	59
	GPR56% and MFI with control, patients and t test	60

List of Eables (Cont...)

Table No	. Title Page	No.
Table (16):	Comparison between GPR56 Low and high expression in patients regarding demographic data	g
Table (17):	Comparison between GPR56 Low and high expression in patients regarding clinical data	
Table (18):	Comparison between GPR56 Low & high expression in patients regarding laboratory results	7
Table (19):	GPR56 low & high expression with FAB subtypes and cytogenetic aberrations	
Table (20):	Comparison between GPR56 low & high expression regarding surface markers	
Table (21):	Comparison between GPR56 low & high expression and response to treatment at Day 28	7
Table (22):	Comparison between GPR56 low & high expression and outcome of patients	
Table (23):	Relation between FAB classification and cytogenetics with response to treatment at day 28	5
Table (24):	Relation between FAB classification and cytogenetics with outcome of patients	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Conditions predisposing to develo	-
Figure (2):	Structure of G-protein coupled rece	ptors 36
Figure (3):	GPR56% expression in AML patien	ts 58
Figure (4):	ROC curve of GPR56 % Ability incomplete remission	-

List of Abbreviations

Abb. Full term

1 D I	A1 1 · · · 1
	Abelson murine leukemia viral oncogene
	antibody-drug conjugate
	Adhesion G-protein coupled receptor G1
ADL	Activities of daily living
Ag	Antigen
<i>ALC</i>	Absolute lymphocyte count
<i>ALL</i>	Acute Lymphoblastic Leukemia
<i>ALT</i>	Alanine aminotransferase
<i>AML</i>	Acute Myeloid Leukemia
AP	Alkaline phosphatase
<i>APL</i>	Acute Promyelocytic Leukemia
AST	Aspartate aminotransferase
ASXL1	Additional sex comb-like 1 mutation
ATRA	All-trans retinoic acid
AYAs	Adolescents and Young Adults
BCL2	B-cell lymphoma 2 gene
BCR	Breakpoint cluster region protein
<i>BFPP</i>	Bilateral frontoparietal polymicrogyria
<i>BM</i>	Bone Marrow
<i>BMT</i>	Bone Marrow transplantation
BSC	Best supportive care
	Chloroacetate Esterase
<i>CBC</i>	Complete Blood Count
	Core Binding Factor
<i>CD</i>	Cluster of Differentiation
CEBPA	CCAAT/enhancer-binding Protein Alpha
	Steal factor
CN-AML	Cytogenically normal Acute Myeloid Leukemia
	Complete remission

Abb.	Full term
CXCR4	Chemokine receptor type 4
Del	
DFN	Different from normal
	Disseminated intravascular coagulopathy
	Deoxyribonucleic acid
	Eastern Cooperative Oncology Group
	Ethylene-diamine-tetra acetic acid
	Oestrogen receptor
<i>ERG</i>	Ets related gene
ETO	Ethylene oxide
EVI1	Ecotropic viral integration site 1
<i>FAB</i>	French American British
FCM	Flow cytometry
FISH	Florescence in-situ hybridization
FLT3	FSM like tyrosine kinase 3
<i>FMS</i>	Fibromyalgia syndrome
<i>GABAB</i>	Gamma-aminobutyric acid B
<i>GAIN</i>	GPCR- Autoproteolysis Inducing domain
<i>G-CSF</i>	Granulocyte Colony Stimulating Factor
<i>GHRH</i>	Growth hormone-releasing hormone
<i>GIP</i>	$Glucose-dependent\ insulinotropic\ polypeptide$
<i>GLP</i>	Glucagon-like peptide
<i>GM-CSF</i>	Granulocyte Macrophage Colony Stimulating Factor
CO	
	Gemtuzumab Ozogamicin G-Protein Coupled Receptor
	G-Protein Coupled Receptor 56
GIRDU	G-1 Toteth Coupled Receptor 50

 $GPS.....GPCR-proteolysis\ site$

Abb.	Full term
GRAFS	Glutamate-Rhodopsin-Adhesion-Frizzled- Secretin
GTPases	Guanosine triphosphate
Hb	Hemoglobin
HLA	Human leukocytic antigen
HLA-Dr	Human leukocytic antigen- antigen D related
	Hematopoietic Stem Cells
	Hematopoietic stem cells transplantation
	Hypomethylating therapy
	Intensive chemotherapy
<i>IDH</i>	Isocitrate Dehydrogenase
<i>IL</i>	
<i>Inv</i>	Inversion
<i>IPT</i>	Immunophenotyping
	Interquartile range
-	Internal tandem duplications
	Ligand for the receptor-type protein-tyrosine kinase
<i>KMT2A</i>	Lysine (K) -specific methyl transferase 2A
LAIP	Leukemia associated immunophenotype
LSCs	Leukemic Stem Cells
LT-LSCs	Long term leukemic stem cells
<i>M0</i>	Minimally differentiated acute myeloblastic leukemia
<i>M</i> 1	Acute myeloblastic leukemia, without maturation
M2	Acute myeloblastic leukemia, with granulocytic maturation
<i>M3</i>	Acute promyelocytic leukemia

Abb.	Full term
M4 eos	Acute Myelomonocytic Leukemia with
	eosinophilia
<i>M4</i>	Acute Myelomonocytic Leukemia
<i>M5</i>	Acute monoblastic leukemia
<i>M6</i>	Erythroblastic leukemia
<i>M</i> 7	Acute megakaryoblastic leukemia
<i>MDR</i>	Multidrug resistance
<i>MDS</i>	Myelodysplastic Syndrome
<i>MFC</i>	Multiparameter flow cytometry
<i>MFI</i>	Mean florescence intensity
<i>MLL</i>	Myeloid/lymphoid or mixed lineage leukemia
<i>MPAL</i>	Mixed phenotype acute leukemia
<i>MPD</i>	Myeloproliferative Disorders
<i>MPL</i>	Myeloproliferative Leukemia
<i>MPN</i>	Myeloproliferative neoplasm
	Myeloperoxidase
<i>MRD</i>	Minimal/ measurable residual disease
<i>MYH11</i>	Myosin heavy chain 11
	Nuclear factor of activated T-cell
NGS	Next generation sequencing
NK	Natural killer
<i>NPM</i>	Nucle ophosmin
	Negative predictive value
NSD1	Nuclear receptor binding SET domain protein
	1
<i>NSE</i>	Non-Specific Esterase
<i>NUP</i>	Nuclear pore complex
OS	Overall survival

Abb.	Full term
PACAP	Pituitary adenylate cyclase-activating
	polypeptide
<i>PAS</i>	Periodic Acid Schiff
<i>PBB</i>	Peripheral blood blast
PBS	Phosphate buffer saline
<i>PBSC</i>	Peripheral Blood Stem cells
PCR	Polymerase Chain Reaction
<i>PKC</i>	Protein kinase C
<i>PML</i>	Promyelocytic leukemia
<i>PPV</i>	Positive predictive value
<i>PRT</i>	Post-remission therapy
<i>PS</i>	Performance status
<i>PTD</i>	Partial tandem duplication
<i>Rac</i>	Subfamily of the Rho family of GTPases
<i>RAR</i>	Retinoic Acid Receptor
RARA	Retinoic Acid Receptor alpha
<i>RBC</i>	$Red\ blood\ cells$
<i>RBM15</i>	RNA-binding Motif protein 15
<i>RNA</i>	Ribonucleic acid
ROC curve	Receiver operating characteristic curve
RUNX1	RUNT-related transcription factor
RUNX1T1	RUNX1T1 gene
SBB	$Sudan\ Black\ B$
SCT	Stem cell transplantation
<i>SD</i>	Standard deviation
<i>SRF</i>	Serum response factor
SSC	Side scatter

 $ST ext{-}LSC \dots Short \ term \ leukemic \ Stem \ Cells$

T.....Translocation

Abb.	Full term
TdT	Terminal deoxynucleotidyl transferase
	Total leucocytic count
	Transmembrane
<i>TP53</i>	Tumor protein p53
<i>VEGF</i>	Vascular endothelial growth factor
<i>VIP</i>	Vasoactive intestinal peptide
<i>WBC</i>	White Blood Cells
<i>WHO</i>	World Health Organization

Abstract

Background: Acute myeloid leukemia is a heterogeneous marrow-based clonal group of neoplasm that affects hematopoietic cells responsible for the production of myeloid lineages. Its diagnosis and sub-classification by WHO criteria require combination of morphology, cytochemistry, cytogenetics and immune-phenotyping with biological and clinical features to define specific disease entities. Aim of the Work: The aim of this study is to analyze GPR56 expression in de novo AML patients using flow cytometry. The results of GPR56 expression will be correlated with the clinical outcome of the patients. Subjects and methods: The study was carried out at Ain Shams University hospitals on a total number of 60 patients attending hematology-oncology unit during the period from November 2016 to July 2017. Patients were assessed at day 28 after induction of treatment by bone marrow examination and follow up. Informed consents were obtained from all subjects prior to enrollment in the study. Results: GPR56 was highly expressed above mean in 62.5% of our acute myeloid leukemia cases. Conclusion: Our Study revealed that high expression of GPR56 was associated with poor response to treatment where patients with high expression had incomplete remission at day 28, on the other hand it lacked prognostic significance with favorable and unfavorable patients' outcome and cytogenetic subgroups. Recommendations: Flow cytometry evaluation of GPR56 should be incorporated into the initial laboratory work-up for all newly diagnosed AML patients. Study of the stability of GPR56 expression during the course of the disease and its applicability as a marker for acute myeloid leukemia.

Key words: G protein-coupled receptor 56, acute myeloid leukemia

INTRODUCTION

myeloid leukemia (AML) is hematologic malignancy characterized by clonal proliferation of myeloblasts, interfering with the production of normal blood cells. AML is the most common acute leukemia affecting adults, showing an increasing incidence with age (Jemal et al., 2002). Despite high-dose chemotherapy, only 30% to 40% of AML patients survive, which is primarily due to relapse of the disease (Lowenberg et al., 2003).

Prognosis of AML is multifactorial, yet highly dependent on the presence of leukemic stem cells (LSCs). Studies have shown that LSCs are present in theCD34+ CD38- compartment (*Dick*, 2008). Various markers have been described to identify LSC such as anti-CD123, anti-CD44, and anti-CD33, but all have some disadvantages (Jin et al., 2006).

The surface protein G protein-coupled receptor 56 (GPR56) was introduced as a novel human LSC marker in AML patients. GPR56 is a member of the secretin family and has been linked to developmental malformations of the human brain (Iguchi et al., 2008). In cancer cells, overexpression of GPR56 is known to suppress tumor growth and metastasis in melanoma cell lines, and GPR56 functions in tumor cell adhesion in glioma cells (Ke et al., 2007).