DESIGN OF INTEGRATED QUALITY ASSURANCE PROGRAM FOR MAINTENANCE OF DESALINATION PLANTS USING SIX SIGMA

Submitted By

Ashraf Abdelbaset Abdelgayed Kaka

B.Sc. of Nuclear Engineering, Faculty of Engineering, Alexandria University, 2005

Master in Nuclear & Radiation Engineering, Faculty of Engineering,
Alexandria University, 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences
Institute of Environmental Studies and Research
Ain Shams University

PROGRAM FOR MAINTENANCE OF DESALINATION PLANTS USING SIX SIGMA

Submitted By

Ashraf Abdelbaset Abdelgayed Kaka

B.Sc. of Nuclear Engineering, Faculty of Engineering, Alexandria University, 2005

Master in Nuclear & Radiation Engineering, Faculty of Engineering, Alexandria University, 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences Under The Supervision of:

1-Prof. Dr. Noha Samir Donia

Prof. of Hydraulics & Head of Department of Environmental Engineering Sciences Institute of Environmental Studies & Research

Ain Shams University

2-Prof. Dr. Tarek Farouk Nagla

Chief Engineering for General Management of Studies and DevelopmentNuclear Power Plants Authority

APPROVAL SHEET

DESIGN OF INTEGRATED QUALITY ASSURANCE PROGRAM FOR MAINTENANCE OF DESALINATION PLANTS USING SIX SIGMA

Submitted By Ashraf Abdelbaset Abdelgayed Kaka

B.Sc. of Nuclear Engineering, Faculty of Engineering, Alexandria University, 2005

Master in Nuclear & Radiation Engineering, Faculty of Engineering, Alexandria University, 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree
In

Environmental Sciences

Department of Environmental Engineering Sciences
This thesis Towards a Doctor of Philosophy Degree in
Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Aly Nabih El Bahrawy

Prof. of Hydraulics - Department of Hydraulics & Irrigation Faculty of Engineering - Ain Shams University

2-Prof. Dr. El Sayed Helmy Khater

Prof. of Chemical Engineering - Department of Chemical Engineering National Research Center

3-Prof. Dr. Noha Samir Donia

Prof. of Hydraulics & Head of Department of Environmental Engineering Sciences Institute of Environmental Studies & Research Ain Shams University

4-Prof. Dr. Tarek Farouk Nagla

Chief Engineering for General Management of Studies and Development Nuclear Power Plants Authority

ACKNOWLEDGEMENT

First of all, I would like to thank almighty Allah for his endless Grace and Blessing on me to fulfill this study.

I will forever be grateful to many people either directly or indirectly for the completion of this thesis. I have benefited enormously from their advice, support and patient.

I wish to express my deepest sense of gratitude and sincerest appreciation Prof. Dr Noha Samir Donia, Professor of Hydraulics, Faculty of Engineering, Ain Shams University, for his excellent advise, enthusiastic guidance and continuous encouragement towards the successful completion of this study.

This thesis would never have been completed without the supervision and nurturing of my advisor, and Dr Tarek Nagla, General Manager of Nuclear Fuel Technical and Economic Studies, Nuclear Power Plants Authority. They contributed tremendously to my scientific development. They show a great patient to help me understanding the basic knowledge related to my research. They always challenged me to produce my best.

I would also like to thank Dr. Yassien Ibrahim, Former chief executive of the Nuclear Power Plants Authority, Ministry of Electricity and Renewable Energy Cairo, Egypt, for his kind assistance and providing the full support in obtaining the data needed to finalize my thesis.

I would like to express my thanks to colleagues in El-Ain-El-Sokhna Power plant staff who supported me by all the data needed to start working in my thesis, especially Eng. Ahmed Ali he supports me by his opinions and the material that sent to me.

I would like to express my thanks to colleagues in Nuclear Power Plants Authority who helped me in the preparation of my calculation.

I wish to express my deepest thanks, gratitude, and appreciation to my father may Allah merciful him and my mother for their love, warm caring, support, praying for me and great patience throughout the time of this study. I wish to express my deepest thanks, gratitude, and appreciation to my brothers Osama and Ehab and my sisters Sannaa and Hiba for their encouragements and for their support to continue this thesis.

Last but not least I would like to express my deep thanks and appreciation to my dear wife, Maha Mohsen and my lovely kids, the source of my happiness, encouragement and motivation.

ABSTRACT

To increase the profitability and decreasing the operation failure of the Multi-Effects Desalination/Thermo vapor compression MED/TVC type the Six-Sigma method will be used as the main method to achieve that.

The objectives of this research are proposed to develop Integrated Quality Assurance Program for maitainence of desalination plants and using the Reliability Centered Maintenance (RCM) for the (MED/TVC) desalination unit type, to improve the performance of desalination unit and increase the life time of its components. By applying the Six-Sigma method, to enhance the Desalination unit performance and increase the operation lifetime, the critical systems in the unit is specified based on the operation experience. The critical systems to safety and to the operation are: Chemical Dosing System (CDS), Sea Water System (SWS), and Evaporators System (ES). Designing an Integrated Quality Assurance Program (IQAP) for maintenance of MED/TVC unit, by using the application of the Six Sigma, defines, measure, analyze, improve, and control (DMAIC) problem-solving methodology in MED/TVC Unit, aimed to increase the Reliability, availability and increase the unit lifetime. From the operation logbook, the low performance of the MED/TVC unit was discovered, also from the maintenance logbook, the lifetime of the evaporator components decreased and not matched with replaced components schedule.

The results of the MED/TVC illustrate a successful practical application of a Six Sigma project in maintenance program for Desalination Unit.

Sea Water System - for sea water system by applying the scientific method (four step method) plus the PDCA cycle, it means we apply the Six Sigma philosophy. To improve the performance of the multi effects Desalination unit and increase the operational lifetime, one of the critical systems in the Multi-effects desalination/thermo vapor compression MED/TVC unit is Sea Water System (SWS). By using the Six Sigma philosophy, define measure, analyze, improve, and control (DMAIC) method for problem-solving methodology in

MED/TVC Unit, to improve the Reliability and Availability of the MED/TVC Unit.

The operation and maintenance staff discovered that the low performance of the MED/TVC unit, the availability and reliability not matches with the operation objectives, also the lifetime of the components for the evaporator decreased and not matched with replaced components as schedule. So, the Reliability Centered Maintenance will apply.

The results of the SWS illustrate a successful practical application of a Six Sigma project in maintenance program for MED/TVC Desalination Unit.

The Integrated Quality Assurance for the MED-TVC desalination unit shall contain the following aspects:

- Organization,
- Quality Management System,
- Quality Assurance in Procurement of Items and Services,
- Management Procedures and Work Instructions,
- Documentation Management system,
- Identification and Control of Items,
- Control of Special Processes,
- Control of Measuring and Test Equipment,
- Handling, Storage, Shipping, and Housekeeping,
- Inspection, Test and Operating Status,
- Control of Nonconformances,
- Corrective Action Program,
- Quality Assurance Records,
- Quality Assurance Assessments,
- Indoctrination, Training and Qualification of Personnel, and
- Statistical Techniques.

By applying all the requirements under each section of the quality assurance program, the performance, reliability, and availability are improved.

TABLE OF CONTENTS

ABSTRACT	i
TABLE OF CONT	ENTSiii
1. LIST OF FIG	URESviii
2. LIST OF TAI	SLESx
4. LIST OF EQU	J ATIONS xii
8. LIST OF ABI	REVIATIONS xiii
10. CHAPTER	ONE2
INTRODUCTIO	N2
1.1 Background	2
1.1.1 QUALITY	ASSURANCE EVOLUTION2
1.1.1.1 QUALIT	Y INSPECTION STAGE2
1.1.1.2 QUALIT	Y CONTROL STAGE2
1.1.1.3 QUALIT	Y ASSURANCE STAGE3
1.1.1.4 TOTAL	QUALITY MANAGEMENT3
1.1.1.5 SIX-SIG	MA STAGE3
1.2 Problem Sta	ement4
1.3 Study Objec	ives4
1.4 Work Plan	5
1.6 Thesis Struc	ure6
CHAPTER TWO.	9
11. LITERATU	RE REVIEW 9
2.1 Literature R	e view 9
2.2 Water Crisis	10
2.2.1 Need For S	eawater Desalination10
2.2.2 Desalination	n Technologies11
2.2.3.1 Multi-Ef	ect Distillation14
2.2.3.2 Multi-Sta	ge Flash Distillation17
2.2.3.2 Reverse (Osmosis21
CHAPTER THREE	27

MED-TVC DESCRIPTION AND DATA ANALYSIS	27
3.1 General Information About Med/Tvc Units	27
3.2 Process Characteristics	27
3.2.1 Distillation Process	27
3.2.1.1 Supply of Heating Medium	29
3.2.1.2 Raw water supply	30
3.2.1.3 Distillate production	30
3.2.1.4 Auxiliary Power Consumption	30
3.2.2 Evaporator	31
3.2.2.1 General design	31
3.2.2.1 Sea Water Spraying Systems	32
3.2.2.2 Demisters	32
3.2.2.3 Heat Transfer Surfaces and Tube plates	32
3.2.2.4 Final Condenser And Feed Heaters	32
3.2.3 Thermal Vapour Compressors	32
3.2.4 Steam Transformer.	33
3.2.5 Vaccum System	34
3.2.6 Hydro Ejector System	34
3.2.7 Steam Ejectors System	34
3.2.8 Chemical Dosing Of Sea Water Feed & Steam Transfered Water	
3.2.8.1 Process Pumps	
3.2.8.1 Piping And Valves	
3.2.8.1.1 Piping Systems	
3.2.8.1.1.1 Steam System	
3.2.8.1.1.2 Distillate System	
3.2.8.1.1.3 Brine Blowdown System	
3.2.8.1.1.4 Sea Water Supply System	
3.2.8.1.1.5 Seawater/Brine Discharge	
3.2.8.1.1.6 Instrument Air	

	3.2.8.1.2 Valves Types	37
	3.2.8.1.2.1 Isolating Valves	37
	3.2.8.1.2.2 Control Valves	37
	3.2.8.2 Acid Cleaning.	38
	3.2.9 Instrumentation	38
	3.2.9.1 Flow Measurement	38
	3.2.9.2 Temperature Measurement	39
	3.2.9.3 Pressure Measurement	39
	3.2.9.4 Level Measurement	39
	3.2.9.5 Conductivity Measurement	39
	3.2.10 Desalination Plant Control	40
	3.2.10.1 Control Panel	40
	3.2.10.2 Protection Of Equipment	40
	3.3 Main Parameters And Data For MED-TVC Systems	41
	3.3.1 Chemical Dosing Skid Package	41
C	HAPTER FOUR	53
	4.1. Scope of the Work	53
	4.2. Methodology	53
	4.2.1 Define The Organization	53
	4.2.2 Measure The Organization	56
	4.2.3 Analyze The Organization	57
	4.2.4 Improve The Organization	59
	4.2.5 Control Phase	59
1.	CHAPTER FIVE	61
2.	RESULTS AND DISCUSSION	61
	5.1 Chemical Dosing System Calculation	61
	5.1.1 Status And Behavior Of Cds Before Applying The Six-Sigm	ıa.62
	5.1.2 Developing Integrated Quality Assurance Program For	
	Maintenance Of Cds.	66
	5.1.2.1 Project Planning	66

5.1.2.1.1 Define Phase	66
5.1.2.1.2 Measure Phase	67
5.1.2.1.3 Analyze Phase	71
5.1.2.1.4 Improve & Control Phase.	81
5.1.2.1.5 Six- Sigma Calculation	83
5.2 Sea Water System Calculations	86
5.2.1 Methodology	86
5.2.2 Status And Behavior Of Sws Before Applying Six- Sigma	. 87
5.2.3 Integrated Quality Assurance Program For SWS Mainter	
5.2.3.1 Project Planning	
5.2.3.2 Definition Phase	95
5.2.3.3 Measurements Phase	97
5.2.3.4 Analysis Phase	98
5.2.3.5 Improve & Control Phase.	108
CHAPTER SIX	113
INTEGRATED QUALITY ASSURANCE PROGRAM	113
6.1 Integrated Quality Assurance Program Structure	113
6.1.1 Organization	113
6.1.2 Quality Management System	114
6.1.2 Quality Assurance in Procurement of Items and Services.	115
6.1.2.1 Procurement Document Control	115
6.1.2.2Evaluation and Selection of Internal and External Provi	ders
	117
6.1.2.3 Internal and External Providers Interface Control	117
6.1.2.4 Verification of Internal and External Providers Perform	
6.1.2.4.1 Acceptance of Items and Services	
6.1.2.5 Management Procedures and Work Instructions	
6.1.3 Documentation Management system	
6.1.4 Identification and Control of Items	120

6.1.5 Control of Special Processes	121
6.1.6 Control of Measuring and Test Equipment	122
6.1.7 Handling, Storage, Shipping, and Housekeeping	122
6.1.8 Inspection, Test and Operating Status	123
6.1.9 Control of Nonconformances	124
6.1.10 Corrective Action Program	125
6.1.11 Quality Assurance Records	127
6.1.12 Quality Assurance Assessments	130
6.1.12.1 Internal Assessments	130
6.1.13 Statistical Techniques	135
CHAPTER SEVEN	138
CONCLUSIONS AND RECOMENDATIONS	138
REFERENCES	148
المستخلص	1
الملخص	

LIST OF FIGURES

Figure 1 1 Steps for developing IQAP for MED-TVC desalination unit	6
Figure 2-1 Areas Projected to Experience Economical and Physical Water Scarcity by 2025	10
Figure 2-2 Accumulated Contracted and Operating Desalination Capacities since 1965	11
Figure 2-3 Desalting Device Theory	12
Fig 2-4 Schematic Diagram of MED Desalination Plant	15
Fig 2-5 Schematic Diagram of MED-TVC Desalination Plant	17
Fig 2-6 Schematic Diagram of MSF Desalination Plant.	18
Fig 2-7 Principle of Reverse Osmosis	22
Fig 2-8 Basic Components of the Reverse Osmosis Seawater Desalination Plant	25
Fig 4-1 Six Sigma project selection process	55
Fig.5-1 Anti-Scaling Flowrate	62
Fig.5-2 Anti-scaling Tank Level	63
Fig.5-3 Anti-Scaling Pump Pressure	63
Fig.5-4 De-chlorination Tank level	63
Fig.5-5 De-Chlorination Flowrate	64
Fig.5-6 Dosing De-Chlorination pump pressure	64
Fig.5-7 Anti-Foaming Tank Level	65
Fig.5-8 Anti-Foaming Pump Flowrate	65
Fig.5-9 Anti-Foaming pump Pressure	66
Fig. 5-10 Pareto Chart for the Anti-Foaming system deviations	70
Fig. 5-11 Pareto chart for the Anti-Scaling system deviations	70
Fig.5-12 Pareto Chart for the DE chlorination system deviations	71

Fig.5-13 Chain of causes- and- occurrences of chemical dosing failures	74
Fig.5-14 Proportions Follow Normal Distribution	75
Fig.5-15 Tank Levels after adjustment.	82
Fig.5-16 Flowrate after adjustment	82
Fig.5-17 Pump Pressure after adjustment	83
Fig.5-18 MED/TVC Desalination Plant Components	88
Fig.5-19 Sea Water Flowrate	89
Fig.5-20 Sea Water Temperature	89
Fig.5-21 PHE Inlet Pressure	90
Fig.5-22 PHE Outlet Pressure	90
Fig.5-23 Sea Water Conductivity	90
Fig.5-24 Condenser Inlet Temperature	91
Fig.5-25 Sea Water Pre-heater Inlet Temperature (Stage 1)	91
Fig.5-26 Sea Water Pre-heater Inlet Temperature (Stage 2)	92
Fig.5-27 Sea Water Pre-heater Inlet Temperature (Stage 3)	92
Fig.5-28 Cell 6 to condenser Vapor Temperature	93
Fig.5-29 Pareto Chart for the Brine PHE system deviations	93
Fig.5-30 Pareto Chart for the Distillate PHE system deviations	94
Fig.5-31 Pareto chart for the Condensation PHE system deviations	94
Fig.5-32. Chain of Causes- and- Occurrences of SWS failures	102
Fig.5-33. Proportions follow normal distribution	105
Fig.5-34 Condenser inlet temperature after adjustment	109
Fig.5-35 Water Flowrate after adjustment	110
Fig.5-36 PHE outlet pressure after adjustment	110

LIST OF TABLES

Table 2-1 Process limits and capability (Okhovat, 2012).	9
Table 3-1 Sea Water Treatment	43
Table 3-2 De-Chlorination Dilution Table	44
Table 3-3 Calculated Setpoint Table	44
Table 3-4 System Monitoring And Recommended Plant Log Format	45
Table 3-5Desalination plant process flow diagram (heat and mass balance)	49
Table 5-1 (SIPOC) Diagram For The Dosing System Operation	68
Table 5-2 Input Controllable Factors And Their Low And High Levels	73
Table 5-3 Experimental Design Strategy Of The DOE Screening	75
Table 5.4 Measurement Results In Terms Of Proportion Of Deviations For The Four CTQs	76
Table 5-5 ANOVA of The Screening DOE And Determination Of The Significant Factors	78
Table 5-6 Metrics Measured Based On Monitored Data	80
Table 5-7 Improvement Actions Shall Be Take Into Account81	81
Table 5-8 (SIPOC) Diagram For The Dosing System Operation	96
Table 5-9 Input Controllable Factors And Their Low And High Levels	101
Table 5.10. Experimental Design Strategy Of The Screening DOE	103
Table 5.11. The Measurement Results In Terms Of	104