

Integration of Geophysical and Remote Sensing Techniques for Sustainable Development of Selected Areas of the Suez Canal Zone

A Thesis Submitted for Partial Fulfillment for the Requirements of the Degree of Master of Science (M.Sc.) in Geophysics

By

Hadeer Ahmed Desoky Farrag

(B.Sc. in Geophysics – Faculty of Science – Ain Shams University – 2012)

To

Geophysics Department Faculty of Science Ain Shams University

Supervised by

Prof. Dr. Abdel Moktader A. El Sayed

Prof. Dr. Salah Eldin Abdel Wahab Mousa

Professor of Petrophysics

Professor of Applied Geophysics

Geophysics Department – Faculty of Science Ain Shams University – Cairo – Egypt

Geophysics Department – Faculty of Science Ain Shams University – Cairo – Egypt

Prof. Dr. Mohamed El Sayed Shokr

Professor of Remote Sensing and Cold Region Environment
National Authority of Remote Sensing and Space Sciences
Cairo – Egypt

Cairo – 2018

Approval Sheet

Integration of Geophysical and Remote Sensing Techniques for Sustainable Development of Selected Areas of the Suez Canal Zone

A Thesis Submitted for Partial Fulfillment for the Requirements of the Degree of Master of Science (M.Sc.) in Geophysics

By

Hadeer Ahmed Desoky Farrag

(B.Sc. in Geophysics – Faculty of Science – Ain Shams University – 2012)

Geophysics Department Faculty of Science Ain Shams University

Advisors Prof. Dr. Abdel Moktader Abd Elaziz Elsayed (Ain Shams University) Prof. Dr. Salah Eldin Abd Elwahab Mousa (Ain Shams University) Prof. Dr. Mohamed El Sayed Shokr (NARSS)

Head of Geophysics Department

Prof. Dr. Sami Hamed Abd El-Nabi

Note

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1) Geophysical field measurements.
- 2) Numerical analysis and computer programming.
- 3) Advanced Well Logging.
- 4) Formation Evaluation.
- 5) Physical properties of rocks.
- 6) Basin analysis.
- 7) Subsurface geology.
- 8) Geophysical exploration.
- 9) Reservoir evaluation.
- 10) Fluid dynamics.

He successfully passed the final examinations in these courses.

In fulfillment of the language requirement of the degree, he also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Sami Hamed Abd El-Naby

﴿ وَاللَّهُ أَنزَلَ مِنَ اللَّهَمَآءِ مَآءَ فَأَخْيَا بِهِ ٱلأَرْضَ بَعْدَ مَوْتِهَا ۚ إِنَّ فِي ذَلِكَ لَايَةً لِقَوْمِ يَسْمَعُونَ ﴾

صَيِّكَ قِالله العَظيم

سورة النحل (الآيه 65)

DEDICATION

This thesis work is dedicated to my dear husband, Mohamed Abd El-Dayem, who has been a constant source of support and encouragement during the challenges of this work and life. I am truly thankful for having you in my life. This work is also dedicated to my dear family: Father, Mother, my son (Anas), my brother, and my sister who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve.

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful

First and foremost, I give **Allah** the glory that made this work to complete.

I would like to express my earnest gratitude and appreciation to my respected supervisor **Prof. Dr. Abdel Moktader Abdel Aziz El-Sayed**, Professor of Petrophysics, Faculty of Science, Ain Shams University, for his supervision, guidance and leading comments in this work and efforts. He provided me a lot of his time for deep discussion for all results. I benefit a lot from his wide experience in the science of Petrophysics.

Deep thanks to **Prof. Dr. Salah Eldin Abd Elwahab Mousa**, Professor of Applied Geophysics, Faculty of Science, Ain Shams University, for his sincere supervision, suggestions, helpful discussion, support and encouragement throughout my work during the MSc. Program. His critical appraisal and suggestions have been priceless at every stage of this research.

Acknowledgments are also due to **Prof. Dr. Mohamed El Sayed Shokr**, Professor of Remote Sensing and Cold Region Environment, National Authority of Remote Sensing and Space Sciences, for his supervision of this thesis. He helped me a lot during the making of this thesis by advises, patience and guidance.

I would like to thank my dear colleagues in **Ain Shams University**, **NRIAG**, and **NARSS**, they helped me a lot in the computer work and in the field work during the progress of this study.

Last but not least, I am forever indebted and would like to express my gratefulness and my deep thanks to my dear husband (Mohamed Abd El-Dayem) and my family (mother, father, brother, sister and my son (Anas) for their great support, understanding, and endless love, through the duration of my studies. I am extremely grateful to them for their encouragement and support.

Hadoor Ahmod Dosoky Farrag

ABSTRACT

The present study deals with an Integration between different techniques which are: Remote Sensing & GIS Analysis, Petrophysical Rock Evaluation, and Electrical Resistivity Measurements to get better understanding and more details to clear the picture about the characteristics of the near surface sedimentary layers and hidden structures, and to assess the groundwater occurrences for sustainable development of a selected area of the Suez Canal zone.

The investigated area is located in the eastern part of the Cairo – Suez district, North of Gulf of Suez and Gebel Ataqa, and to the west of Suez Canal, Egypt. It is located between latitudes 30° 00' 30" N, 30° 22' 15" N, and longitudes 32° 04' 00" E, 32° 41' 15" E covering an area of some 2400 km^2 .

It has a semi-flat terrain except the area to the west where topography rises defining the southern mountains as in Gebel Geniefa, which rises on average to 234 m above sea level and Gabel Shabraweet, which rises on average to 226 m above sea level.

The area's bedrock geology is made up, from the bottom (old) to top (recent) of the followings; (1) the Middle Eocene Gebel Hof and the Observatory formations, (2) the Middle/Upper Eocene El-Qurn Formation, (3) the Upper Eocene Maadi Formation, (4) the Oligocene Gebel Ahmer Formation, (5) the Miocene Sediments & Late Miocene Hagul Formation, (6) the Pliocene sediments & El-Hagif Formation, and (7) the surficial Late Quaternary Wadi deposits

In the present study, the Landsat - 8 OLI, and Sentinel-2B data were used to map the different exposed rock units. Integration of band selection, image enhancement, band rationing and Principal Component Analysis (PCA) techniques were used to clearly determine the lithological units cropping out in the study area. After that, Sentinel-2B image was compared with Landsat-8 OLI (Operational Land Imager) for lithological mapping using the maximum likelihood classification (MLC) method. The Sentinel-2B imagery yielded a classification accuracy higher than that of the Landsat-8 imagery, due to its high spectral resolution. With the help of remote sensing techniques, lineaments can be identified. The aim of this part is the comparison of Landsat-8, Sentinel-2B and Sentinel-1 data sensors in automatic lineament extraction. The comparison of the obtained results showed that the Sentinel-1 data is more efficient in restitution of lineaments.

This indicates the performance of the radar data compared to those optical in this kind of study. The results were compared with existing geologic maps and could be used to update the existing maps.

Thin section examination was applied to 13 selected rock samples representing the different formations to detect the different facies, mineral composition, textural characteristics as well as the diagenesis of the rocks.

Field sampling has been carried out to evaluate the petrophysical properties of the different collected rock samples from a selected two sections at Gebel Geniefa and Gebel Gharra areas. A total of 41 cylindrical representative rock samples collected from the exposed Miocene and Eocene rocks have been evaluated for their petrophysical parameters including: bulk density, grain density, porosity, permeability, ultra-sonic wave propagation velocity, then construct some relationships between these different measured parameters.

An attempt has been made to study the detail morphometric characteristics of some selected basins. For detailed study, SRTM data has been used for preparing digital elevation model (DEM), and geographical information system (GIS) was used in evaluation of linear, areal and relief aspects of morphometric parameters. Watershed boundary, flow accumulation, flow direction, flow length, and stream ordering have been prepared using ArcHydro Tool; and contour, slope-aspect, hill-shade have been prepared using Surface Tool in ArcGIS-10.4.1 software. Different thematic maps i.e. drainage density, slope and relief have been prepared by using ArcGIS software.

Geo-electrical resistivity measurements have been carried out to evaluate the conditions of groundwater occurrences for sustainable developments of the zones around Suez Canal region by identifying vertical and horizontal extensions of the sedimentary succession, especially water bearing formations and the structural elements such as fractures and faults which affected on water bearing formation.

Key Words:

Cairo - Suez district _ Suez Canal _ VES _ Petrophysics _ Landsat 8 OLI _ Sentinel-1 _ Sentinel-2B _ Lineaments _ Remote Sensing _ GIS _ SRTM _ Hydrology _ Morphometric Analysis.

CONTENTS

Title	Page
Acknowledgements	I
Abstract	II
Contents	IV
List of Figures	XII
List of Tables	XXI
Symbols and Abbreviations	XXII
CHAPTER 1	
Introduction	
1.1 General View	1
1.2 Location of The Study Area	2
1.3 Area Accessibility	3
1.4 Aim and Scope of the Present Study	4
1.5 Plan of the Present Study	6
CHAPTER 2	
GEOLOGICAL BACKGROUND	
2.1 Introduction	9
2.2 Stratigraphic Succession.	10
2.2.1 Gebel Hof Formation (TemHo)	11
2.2.2 Observatory Formation (TemOb)	11
2.2.3 El-Qurn Formation (TemQn)	13
2.2.4 Maadi Formation (TeuMd)	13
2.2.5 Gebel Ahmer Formation (ToAh)	16

Γitle	Page
	2.2.6 Miocene Sediments
	2.2.7 Pliocene Sediments
	2.2.8 Plio – Pleistocene
	2.2.9 Pleistocene-Holocene Sediments [Quaternary]
2.3	Regional Structures
	2.3.1 Faults
	2.3.2 Folds
	2.3.3 Joints
	2.3.4 Unconformity
2.4	General Geomorphological Features
	2.4.1 Physiographic synopsis
	2.4.1.1 Gebel Mokattam-Gebel Ataqa Tableland
	2.4.1.2 Cairo-Gebel Shabrawit Ridges
	2.4.1.3 Main Geniefa Scarp (264 meters)
	2.4.1.4 East Gharra (306)
	2.4.2 Drainage Pattern
	2.4.3 Wadis
	2.4.3.1 Wadi El-Abiad
	2.4.3.2 Wadi Sadd El-Gamoos
	2.4.3.3 Wadi Abou Hessy
	2.4.4 The Vast Eastern Plain
	CHAPTER 3
	REMOTE SENSING ANALYSIS
3.1	Introduction
	3.1.1 The Remote Sensing System
	3.1.2 The Electromagnetic Radiation (EMR)

Title Page
3.2 Satellite Data
3.2.1 Optical Images
3.2.1.1 Landsat-8 (OLI/TIRS) Data
3.2.1.2 Sentinel-2B (MSI) Data
3.2.2 RADAR Image
3.2.2.1 Sentinal-1A Data
3.3 Methodology Applied on Optical Images
3.3.1 Pre-processing of the Landsat-8 OLI and Sentinal-2E
Data
3.3.1.1 Radiometric Calibration
3.3.1.2 Atmospheric Correction
3.3.1.3 Subset the Area of Interest
3.3.1.4 Signal/Noise Ratio Enhancement
3.3.2 Processing of the Landsat-8 OLI and Sentinal-2E
Data
3.3.2.1 Band Combination and False Color Composite (FCC)
Images
3.3.2.2 Image Enhancement
3.3.2.2.1 Radiometric Enhancement (Contrast
Enhancement)
3.3.2.2.2 Spatial Enhancement (Image Fusion) 55
3.3.2.3 Band Ratio: Color Ratio Composites (CRC) 55
3.3.2.4 Principal Component Analysis (PCA)
3.4 Lithological Classification Using OLI and Sentinel-2B Data 66
3.4.1 Accuracy Assessment
3.5 Methodology Applied on Radar Data
3.5.1 Pre-processing of the Sentinel-1A Image71

Title Page
3.5.1.1 Apply Orbit File
3.5.1.2 Radiometric Calibration
3.5.1.3 Elimination of the Speckle Effect (Speckle Filter) 73
3.5.1.4 Terrain Correction and Subset the Area of Interest 73
3.6 Lineament Extraction
3.6.1 Data Used and Methodology
3.6.2 Accuracy Assessment
3.6.2.1 Discontinuities
3.6.2.2 Lineaments Density
3.6.2.3 Orientation
CHAPTER 4
PETROGRAPHICAL ANALYSIS
4.1 Introduction
4.2 Petrography of Genefe Formation
4.2.1 Biosparite
4.2.2 Biomicrite
4.3 Petrography of Gharra Formation
4.3.1 Quartz arenite
4.4 Petrography of El-Qurn Formation
4.4.1 Intramicrite
4.4.2 Biomicrite
4.5 Petrography of the Observatory Formation
4.5.1 Biosparite

Title Page

CHAPTER 5

PETROPHY	SICAL	ROCK	PROPER'	TIES
FRIKUPHY		NUK	FRUPER	

5.1 Introduction
5.2 Field Sampling
5.3 Preparation of the Studied Samples
5.3.1 Cutting of Samples
5.3.2 Cleaning of Samples
3.3.3 Samples Drying
5.4 Laboratory Measurements
5.4.1 Porosity [Ø]
5.4.1.1 Laboratory Measurements of Porosity
5.4.1.2 Statistical Analysis of Porosity Data
5.4.1.3 Determination of Mean, Median and Standard
Deviation of Porosity Values
5.4.2 Permeability [k]
5.4.2.1 Units of Permeability
5.4.2.2 Classification of Permeability
5.4.2.3 Determination of Permeability Value
5.4.2.4 Laboratory Measurements of Permeability 111
5.4.2.5 Statistical Analyses of Permeability Data
5.4.2.6 Determination of Mean, Median and Standard
Deviation of Permeability Values
5.4.2.7 Relationship Between Permeability and Porosity 114
5.4.3 Rock Density Properties
5.4.3.1 Bulk Density [ρb]116
5.4.3.1.1 Measurements of Bulk Density

Title					1	Page
	5.4.3.1.2	Relationship	Between	Bulk	Density	and
	Porosity					. 117
	5.4.3.1.3	Relationship	Between	Bulk	Density	and
	Permeabil	ity				. 118
	5.4.3.2 Grain	Density [ρg]				. 119
	5.4.3.2.1 N	Measurements of	of Grain De	nsity		. 119
	5.4.3.2.2	Relationship E	Between Gr	ain Dei	nsity and	Bulk
	Density					. 120
	5.4.3.3 Packi	ng Index		•••••		. 121
	5.4.3.3.1	Relationship	Between	Packin	g Index	and
	Porosity	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	. 121
	5.4.4 Reservoir Q	uality Index (R	QI)		• • • • • • • • • • • • • • • • • • • •	. 122
	5.4.4.1 Reser	voir Quality In	idex (RQI)	– Poros	ity (Ø) &	Bulk
	Density (ρb)	Relationship				. 123
	5.4.4.2 Rese	rvoir quality	index (RQ	I) – Po	ermeability	(k)
	Relationship	•••••		• • • • • • • • • • • • • • • • • • • •		. 125
	5.4.5 Acoustic Wa	ave Velocity				. 126
	5.4.5.1 Statis	tical Analysis o	f Velocity I	Oata		. 127
	5.4.5.2 Relati	onship between	v_P and v_S			. 128
	5.4.5.3 Relati	onship between	V_P and P_O	rosity		. 129
	5.4.5.4 Relati	onship between	n V _S and Po	rosity		. 130
	5.4.5.5 Relati	onship between	V_P and Bu	lk Dens	ity	. 131
	5.4.5.6 Relati	onship between	V_S and Bu	lk Dens	ity	. 132
	5.4.5.7 Relati	onship between	V_P/V_S and	V _P		. 133
	5.4.5.8 Relati	onship between	V_P/V_S and	V _S		. 134
	5.4.5.9 Relati	onship between	V_P/V_S and	Porosit	y	. 134
	5.4.5.10 Rela	tionship between	en V _P /V _S an	d Bulk	Density	. 135

Title Page
5.4.5.11 Determination of Dynamic Elastic Properties136
5.4.5.12 Relationship between V_P and Bulk's Modulus 139
5.4.5.13 Relationship between V _P and Young's Modulus 140
$5.4.5.14$ Relationship between V_S and Young's Modulus 141
$5.4.5.15$ Relationship between V_S and Rigidity Modulus 141
5.4.5.16 Relationship between Porosity and Bulk's
Modulus
5.5 Petrophysical Modeling
5.5.1 Porosity Modeling
5.5.2 Permeability Modeling
5.5.3 Compressional Wave Velocity Modeling
5.5.4 Shear Wave Velocity Modeling
CHAPTER 6
MORPHOMETRIC ANALYSIS
6.1 Introduction
6.2 Digital Elevation Model (DEM)
6.2.1 Topographic Contour Map
6.3 Geographical Information System (GIS)
6.4 Data Used and Methodology
6.5 Terrain Analysis
•
6.6 Hydrological Analysis
6.6 Hydrological Analysis
6.6 Hydrological Analysis 153 6.6.1 Filling Sinks 155
6.6 Hydrological Analysis 153 6.6.1 Filling Sinks 155 6.6.2 Flow Direction 155