

Assessment of the serum CD14 and TIMP-1 levels as noninvasive markers of liver fibrosis in chronic hepatitis C patients

THESIS SUBMITTED BY

ASMAA ABD-ELFATTAH DEGHEDY

M.SC. IN BIOCHEMISTRY

2012

As a requirement for PhD degree in Biochemistry Faculty of Science – Ain Shams University

Under Supervision of

Dr. Eman M. Abd El-Azeem

Professor of biochemistry Faculty of Science, Ain Shams University Biochemistry Department

Dr. Magda Kamal El-Din Ezz

Professor of biochemistry
Faculty of Science,
Ain Shams University
Biochemistry Department

Dr. Amin M. Abdel Baki

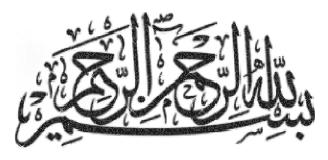
Consultant Gastroenterology, Hepatology and Infectious Diseases National hepatology and tropical medicine research institute

> Ain Shams University Faculty of Science Biochemistry Department 2018

Assessment of the serum CD14 and TIMP-1 levels as noninvasive markers of liver fibrosis in chronic hepatitis C patients

Board of scientific supervision

Dr. Eman M. Abd El-Azeem


Professor of biochemistry
Faculty of Science, Ain Shams University
Biochemistry Department

Dr. Magda Kamal El-Din Ezz

Professor of biochemistry Faculty of Science, Ain Shams University Biochemistry Department

Dr. Amin M. Abdel Baki

Consultant Gastroenterology, Hepatology and Infectious Diseases National hepatology and tropical medicine research institute

(التوبة : 105)

ACKNOWLEDGEMENT

I am grateful for ALLAH for helping me, giving me the ability to complete this research from the initial to the final and for gifting me the people who were so helpful and friendly during these years of research.

Several people have been instrumental in allowing this research to be completed.

First and foremost, I offer my sincerest and deepest gratitude to my supervisors, Dr. Eman M. Abd El-Azeem and Dr. Magda Kamal El-Dín Ezz, Professor of biochemistry, Faculty of Science, Ain Shams University, Biochemistry Department, who have supported me throughout my research with their patiences and knowledges. One simply could not wish for a better or friendlier supervisors, and really it was honor for me to work with you.

I would like also to thank **Dr. Amin M. Abdel Baki, Consultant Gastroenterology, Hepatology and Infectious Diseases**, **National hepatology and tropical medicine research institute,** who shared his ideas with me and gave me his time and comments and really your professional collaboration meant a great deal to me.

Finally, I would like to thank my lovely parents, my lovely family and my lovely husband for supporting me to see all my dreams come true.

Declaration

This thesis has not been submitted for a degree at this or any other university.

Asmaa Abd El Fattah Deghedy

Ain Shams University Faculty of Science Biochemistry Department

Biography

Name: Asmaa Abd El Fattah Deghedy.

Date of Graduation: May 2005, Faculty of Science,

Biochemistry/Microbiology Department,

Ain Shams University.

Degree awarded : M.Sc. in Biochemistry, 2012

Occupation : Laboratory specialist at National

hepatology and tropical medicine

research institute.

Dedication

This work is dedicated to my lovely Mum and Dad.

Thank you for your love, ecouragement and support, and I want to tell you that your friendship and caring have been the driving force in my life during these years. I really wish I could give my kids some of the love and the care you gived to me, love u both more than anyone can imagin and may God bless you for me.

Warmest thanks for my sisters and brothers; we have shared unforgettable moments together which make my life full with happiness and you will be always my best friends and everything for me.

Finally, I own my greatest gratitude to my husband youssef and my kids Karim and Kinda, one couldn't wish a better family. God bless you all.

LIST OF CONTENTS

Content	No.
ABSTRACT	I
LIST OF FIGURES	II
LIST OF TABLES	VI
LIST OF ABBEVATIONS	VIII
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE	4
Hepatitis C Virus	4
Structure of the virion	5
Structure of the viral genome	7
Tissue target	8
Hepatitis C viral life cycle	9
a- Viral attachment, entry and fusion	9
b- HCV RNA translation, polyprotein processing and replication	10
c- Viral assembly and release	12
Acute and Chronic hepatitis C	14
I- Acute hepatitis C	14
II- Chronic hepatitis C	16
Screening and diagnosis	16
Fibrosis	17
Pathobiology for liver fibrogenesis	18
Pathophysiology of liver fibrosis in chronic hepatitis C	20
virus infection	20
Predicting the progression of fibrosis	22
Detection of liver fibrosis	24
A- Invasive method	24
Liver biopsy	24
METAVIR scoring system	25
B- Noninvasive biomarker	29
1- Imaging techniques	30
2- Serum biomarkers	31
a- Indirect (or class II) markers of liver fibrosis	32
b- Direct (or class I) markers of liver fibrosis	34

Content	No.
I- TIMP-1	
The role of TIMP-1 in fibrosis	
II- CD14	41
III- TGF-β1	45
Mechanism of fiborsis	47
Fibrosis and apoptosis	52
SUBJECTS AND METHODS	54
I- SUBJECTS	54
A- Samples collection	55
Blood specimens	55
B- Chemicals and Reagents	56
C- Parameters to be investigated	56
II- METHODS	57
1- Determination of serum alanine aminotransferase (ALT)	57
2- Estimation of Aspartate transaminase (AST)activity in serum	60
3- Determination of serum albumin level.	63
4- Determination of total bilirubin level.	64
5- Determination of Prothrombine time.	
6- Determination of complete blood count	66
7- Determination of HCV-Ab by ELISA	66
8- Determination of HCV (RNA) by real time PCR	67
9- Determination of serum Alpha fetoprotein (AFP) by ELISA	69
10- Determination of serum tissue inhibitor of metaloprotease-1 (TIMP-1)	
11- Determination of serum cluster of differentiation 14 (sCD14)	75
12- Determination of serum transforming growth factor β 1 (TGF- β 1)	79
Histopathological assessment of liver biopsy samples	83
Statistical analysis	84
RESULTS	86
DISCUSSION	127
Summary and Conclusion	149
Recommendations	
References	154

ABSTRACT

Backround: HCV infection is closely associated with liver fibrosis, a major risk factor related to liver cirrhosis and hepatocellular carcinoma.

Aim: To analyze the association of serum s-CD14, TIMP-1 and TGF- β 1 level with the stages of fibrosis in hepatic tissue of HCV infected patients as an alternative non-invasive markers.

Subjects: Eighty five volunteers, divided as fifteen healthy subjects as a control group and seventy HCV patients with liver fibrosis classified into four subgroups according to the degree of fibrosis: group 1 (liver fibrosis F4), group 2 (liver fibrosis F3), group 3 (liver fibrosis F2) and group 4 (liver fibrosis F1).

Methods: Direct biomarkers, serum s-CD14, TGF-β1and TIMP-1 levels, and AFP level were determined using ELISA technique. Serum ALT, AST, albumin, total bilirubin, prothrombin INR, complete blood count were detected. Indirect biomarkers, ALT/AST Ratio (AAR) and Fib4 were also calculated.

Results: Serum sCD14, TGF-β1 and TIMP-1 levels showed a highly significant increase, also serum level of AFP increased significantly in all patients compared to normal control group. This increasment was parallel to the degree of fibrosis. The diagnostic accuracy of all direct blood markers were significantly increased by increasing the stages of fibrosis, while the accuracy of indirect markers (AAR and Fib 4) increased in the early stage of fibrosis.

Conclusion: The results from this study have shown that, sCD14, TIMP-1 and TGF-B1 has high sensitivity and specifity for extensive stages of fibrosis (F3 and F4) and sCD14 was the most sensitive and specific non invasive marker for diagnosis and prognosis of extensive stages of fibrosis (F3 and F4).

KEY WORDS: HCV, Fibrosis, s-CD14,TIMP-1, TGF-β1.

LIST OF FIGURES

Figure number	Title	Page
1	Hepatitis C virus (HCV): model structure	6
	and genome organisation.	O
2	Schematic representation of HCV life cycle.	13
3	The METAVIR fibrosis staging system.	28
4	Natural history of hepatitis C.	29
5	Serum biomarkers for liver fibrosis.	31
6	Structure of TIMP-1 and its	20
	metalloproteinase interaction regions.	38
7	LPS recognition system.	43
8	CD14 localisation.	43
9	Imunopathogenesis of hepatitis C virus	53
	(HCV)-induced liver fibrosis.	33
10	ALT standard curve.	59
11	AST standard curve.	62
12	Standered curve for TIMP-1.	74
13	Standered curve for sCD14.	78
14	Standered curve for TGF-β1.	82
15	% change of CBC and PT INR in different	00
	HCV groups.	88
16	% change of liver function tests in different	90
	HCV groups.	90
17	% change of Direct blood markers for non-	
	invasive diagnosis of liver fibrosis in	93
	different HCV groups.	
18	% change of indirect blood markers for non-	
	invasive diagnosis of liver fibrosis in	95
1.0	different HCV groups.	
19	Positive correlation between AFP and AST	99
	in F1 HCV gruop	

Figure number	Title	Page
20	Positive correlation between AFP and T.bil in F1 HCV group.	99
21	Positive correlation between AFP and Fib4 in F1 HCV group.	100
22	Positive correlation between Fib4 and ALT in F1 HCV group.	100
23	Positive correlation between Fib4 and AST in F1 HCV group.	101
24	Negative correlation between TGFB1 and hemoglobin in F1 HCV group.	101
25	Negative correlation between AFP and PT in F1 HCV group.	102
26	Positive correlation between Fib4 and T.bil in F2 HCV group.	103
27	Negative correlation between TIMP-1 and plateltes in F2 HCV group.	103
28	Negative correlation between sCD14 and AAR in F2 HCV group.	104
29	Negative correlation between AAR and WBCs in F2 HCV group.	104
30	Negative correlation between Fib4 and Alb in F2 HCV group.	105
31	Negative correlation between Fib4 and platelets in F2 HCV group.	105
32	Negative correlation between fib4 and PT in F2 HCV group.	106
33	Positive correlation between AFP and ALT in F3 HCV group.	107
34	Positive correlation between AFP and T.bil in F3 HCV group.	107
35	Positive correlation between AFP and Fib4 in F3 HCV group.	108

Figure number	Title	Page
36	Positive correlation between AAR and AST in F3 HCV group.	108
37	Positive correlation between AAR and INR in F3 HCV group.	109
38	Negative correlation between TIMP-1 and ALb in F3 HCV group.	109
39	Negative correlation between AFP and platelets in F3 HCV group.	110
40	Negative correlation between AFP and PT in F3 HCV group.	110
41	Negative correlation between Fib4 and ALb in F3 HCV group.	111
42	Negative correlation between Fib4 and WBCs in F3 HCV group.	111
43	Negative correlation between Fib4 and platelets in F3 HCV group.	112
44	Positive correlation between TIMP-1 and Fib4 in F4 HCV group.	113
45	Positive correlation between TIMP-1 and ALT in F4 HCV group.	113
46	Positive correlation between TIMP-1 and AST in F4 HCV group.	114
47	Positive correlation between AFP and T.bil in F4 HCV group.	114
48	Positive correlation between Fib4 and AST in F4 HCV group.	115
49	Negative correlation between TIMP-1 and hemoglobin in F4 HCV group.	115
50	Negative correlation between AFP and ALb in F4 HCV group.	116
51	Negative correlation between Fib4 and platelets in F4 HCV group.	116

Figure number	Title	Page
52	Negative correlation between AAR and ALT in F4 HCV group.	117
53	Receiver operating characteristic curves of direct markers of liver fibrosis evaluated in F1 HCV group.	119
54	Receiver operating characteristic curves of indirect markers of liver fibrosis evaluated in F1 HCV group.	120
55	Receiver operating characteristic curves of direct markers of liver fibrosis evaluated in F2 HCV group.	121
56	Receiver operating characteristic curves of indirect markers of liver fibrosis evaluated in F2 HCV group.	122
57	Receiver operating characteristic curves of direct markers of liver fibrosis evaluated in F3 HCV group.	123
58	Receiver operating characteristic curves of indirect markers of liver fibrosis evaluated in F3 HCV group.	124
59	Receiver operating characteristic curves of direct markers of liver fibrosis evaluated in F4 HCV group.	125
60	Receiver operating characteristic curves of indirect markers of liver fibrosis evaluated in F4 HCV group.	126

LIST OF TABLES

Table number	Title	Page
1	Child-pugh classification of severety of liver disease.	23
2	The METAVIR system.	27
3	General characteristics of all studied group.	86
4	Complete blood count (CBC) in all studied groups.	87
5	Liver function test in all studied groups.	89
6	Direct blood markers for non-invasive diagnosis of liver fibrosis.	92
7	Indirect blood markers for non-invasive diagnosis of liver fibrosis.	94
8	Pearson's correlation coefficients (r) between direct markers for liver fibrosis and some biochemical parameters in different HCV groups.	96
9	Pearson's correlation coefficients (r) between indirect markers for liver fibrosis and some biochemical parameters in different HCV groups.	97
10	Area under the curve and the cutoff value of Direct markers of liver fibrosis evaluated in F1 HCV Group.	119
11	Area under the curve and the cutoff value of indirect markers of liver fibrosis evaluated in F1 HCV Group.	120
12	Area under the curve and the cutoff value of Direct markers of liver fibrosis evaluated in F2 HCV Group.	121