UTILIZATION OF SULFUR SLUDGE RESULTS FROM MANUFACTURING OF SULFURIC ACID

Submitted By

Moustafa Youssef Mohamed Youssef

B.Sc. of Science (Chemistry/ Physics), Faculty of Science, Fayoum University, 2006

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2018

APPROVAL SHEET

UTILIZATION OF SULFUR SLUDGE RESULTS FROM MANUFACTURING OF SULFURIC ACID

Submitted By

Moustafa Youssef Mohamed Youssef

B.Sc. of Science (Chemistry/ Physics), Faculty of Science, Fayoum University, 2006 A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name Signature

1-Prof. Dr. Abdel Fatah Bastawy Farag

Prof. of Environmental Chemistry Faculty of Science Helwan University

2-Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic Chemistry Faculty of Science Ain Shams University

3-Prof. Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Prof. of Environmental Analytical Chemistry Vice Dean of Institute of Environmental Studies & Research for Environment & Community Affairs Ain Shams University

4-Dr. Mohamed Abd El Rahman Ahmed Zaid

Head of Laboratories and Research Sector Abu Zaabal for Fertilizer and Chemical Company

2018

UTILIZATION OF SULFUR SLUDGE RESULTS FROM MANUFACTURING OF SULFURIC ACID

Submitted By

Moustafa Youssef Mohamed Youssef

B.Sc. of Science (Chemistry/ Physics), Faculty of Science, Fayoum University, 2006

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science
Department of Environmental Basic Science

Under The Supervision of:

1-Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic Chemistry Faculty of Science Ain Shams University

2-Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Associate Prof. of Environmental Analytical Chemistry Department of Environmental Basic Sciences Institute of Environmental Studies & Research for Ain Shams University

3-Dr. Mohamed Abd El-Hamid El-Fiki (Dead)

Ph.D. in Inorganic Chemistry Abu Zaabal for Fertilizer and Chemical Company

2018

ACKNOWLEDGMENTS

ACKNOWLEDGEMENT

Praise is to ALLAH, Who guided us to this; and in no way could we have been quided, unless ALLAH has guided us.

Words are not enough to describe my deep thanks to **Prof. Moustafa M. H. Khalil,** Professor of inorganic chemistry, Faculty of Science, Ain shams University, for his guidance and supervision in the course of the work, and for his stimulating criticisms and help in the preparation of the manuscript. For teaching me how to think, study and work to get solution for any problem in my all practical life.

I owe a well-deserved debt of deep gratitude to **Prof Taha Abd El-Azim M.**A.Razek Professor of environmental chemistry for suggesting the program of this work his invaluable help and support throughout the past period while preparing my thesis, right from the inception phase till the very end is highly appreciated.

My deep thanks to Dr. Mohammed Abd El-Rahman Zaid, sector head of laboratories, researches and quality control in Abu Zaabal company (AZFC), for suggesting the program of this work, his interest, encouragement and valuable revision of the thesis.

Special thanks are extended to my dear friends Medhat Hassan, Moamen Saber, Mohamed Hassan, Hassan Hussein and Tarik el-Said for their support, trust, help and well understanding.

My thanks and best wishes extend to all members of AZFC especially to Mostafa El-Gabaly, Samir Abd El-Nabi, Fuad Gomma and Adel abbas For their support and huge facilities offered in different ways during the progress of this work.

My deep thanks to my parents, they always asks ALLAH to help me to carry out this work. Furthermore, I would like to express special words to my wife for providing me with Support, love and stood by me through the good and hard times. I also would like to thank my daughter and my two sons for always making me happy and smile. I also hope to thank my family for all their love and encouragement.

M. Youssef

₿⋗⋞∯⋗⋞∯⋗⋞∯⋗⋞∯⋗⋞∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖⋬⋫⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖⋬⋫⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯⋗⋖∯

ABSTRACT

ABSTRACT

During sulfuric acid manufacturing, huge quantity of wastes is being generated and causes major environmental problems for their storage and disposal. On the other hand, fertilizer industry is an important industry for assessing the plant requirements. But this industry faces a serious problem of fertilizer product stabilization under the handling and storage conditions. Therefore, in this study attempts were made for solving these problems; these attempts were achieved by using sulfur sludge wastes as conditioner; sulfur sludge is internal conditioner A number of compound fertilizer (NPK fertilizer) formulations based on sulfur sludge as a filler have been prepared. The main physico-chemical properties of the prepared formulations, such as chemical composition, granulometric composition and crushing strength of granules were examined by standard methods. A comparative study with the other fertilizer formulations that containing phosphogypsum filler, bentonite clay filler and containing no fillers was done. The results showed that the prepared formulations using sulfur sludge as filler exhibited improvement in NPK fertilizers quality which notified in terms of physical and chemical characteristics compared with the reference NPK fertilizers (containing no fillers) and those containing phosphogypsum filler and bentonite clay filler. This improvement in NPK fertilizers quality is considered an evidence of the positive effect of sulfur sludge waste on the NPK fertilizers industry hand-in-hand with the environmental protection and the plant nutrition.

On the other hand, filtering of molten sulfur in sulfuric acid manufacturing is required to remove solids that may plug sulfur spray nozzles or accumulate in catalyst beds that increasing the pressure drop and decreasing operating durations, this filtration works efficiently only after using filter aid and initial deposits have been trapped in the medium. Filter aid generally, consists of two materials, the first one works as a filler material and another one works as a colloidal material in this

study attempts were achieved by using sulfur sludge wastes after treatments of this sludge by concentrated sulfuric acid as a filler in manufacturing of filter aid. A comparative study with the other filter aid such as Kessel Gohar diatomite (global product) and ABU ZAABLE 12 "AB12" (local product). Results showed that the prepared filter aid using sulfur sludge as filler decreases the ash content in filtrated sulfur than Kessel Gohar diatomite and AB12 with ratio of about 35.8% and 65% respectively, and thus result in increasing the operating durations due to decreasing the amount of ashes deposited in the catalyst beds comparing with filter aids of Kessel Gohar diatomite and AB12 with ratio of about 36.4% and 65.5% respectively. On other hand sulfur sludge filter aid also improves filter operating duration than Kessel Gohar diatomite and AB12 with ratio of about -1.7% and 46.3% respectively. Finally sulfur sludge filler in manufacturing of filter aid can be used as a reusable material without any change on the ashes in filtrated sulfur and filter operating duration.

CONTENTS

CONTENTS

CONTENTS	i
LIST OF FIGURES	iv
LIST OF TABLES	Vi
ABBREVIATIONS	Viii
CHAPTER 1. Introduction	
1.1. Background	1
1.1.1. Geology of materials for Sulfuric acid production	2
1.1.2. Sulfuric acid production	2
1.1.2.1. Lead chamber process	3
1.1.2.2. Contact process	4
1.1.3. Sulfuric acid wastes	6
1.2. Literature review	6
1.2.1. Industrial wastes	6
1.2.2. wastes of sulfuric acid plants	7
1.2.3. Sulfur filtration and formation of sludge	7
1.2.3.1. Filter operation	8
1.2.4. Agricultural uses	13
1.2.4.1. Natural occurrence and commercial exploitation of sulfur	14
1.24.2. The importance of Sulfur for plants	16
1.2.4.3. Mineralization and immobilization of sulfur in soil	16
1.2.4.4. Sulfur fertilizers	18
1.2.5. Fertilizers, General Background	19
1.2.5.1. Economic and environmental problems associated with	
fertilizers applications	22
1.2.6. Filter aid filtration	26
1.2.6.1. Types of filter aid	28
1.2.6.1.1 Porous media types	28
1.2.6.2 The mechanism of filtration with filter aid	29
1.4. Aim of work	31
CHAPTER 2. Materials and methods	
2.1. Materials	33
2.1.1. Chemicals	33
2.1.2. Reagents	34

2.2. Instruments and Equipment	35
2.2.1. General	35
2.2.2. Measurement instruments	36
2.2.2.1. Spectrophotometer	36
2.2.2.2. Atomic absorption spectrometer	36
2.2.2.3. Kjeldahl apparatus	36
2.2.2.4. Flame photometer	36
2.3. Analytical Experiments	36
2.3.1. Preparations of raw materials	36
2.3.1.1. Preparation of solid materials	36
2.3.1.1.1. Preparation of sulfur sludge	37
2.3.1.1.2. Preparation of phosphogypsum	37
2.3.1.1.3. Preparation of Bentonite clay	37
2.3.1.1.4. Preparation of fertilizer materials (FM)	37
2.3.2. Preparation of the NPK fertilizers	38
2.3.3. Preparation of filter aid	44
2.3.3.1. Preparation of sulfur sludge filter aid	44
2.3.3.2. Preparation of Abu Zaabal 12(AB12)	44
2.3.3.3. Preparation Kessel Gohar diatomite	44
2.3.4. Analytical methods	45
2.3.4.1. Physical analysis	45
2.3.4.2. Chemical analysis	46
CHAPTER 3. Results and discussions	
3.1. SECTION ONE: Characterization of the prepared NPK	
Fertilizers	52
3.1.1 Characterization of raw materials	53
3.1.1.1. Characterization of sulfur sludge (SS)	53
3.1.1.2. Characterization of phosphogypsum (PG)	54
3.1.1.3. Characterization of bentonite clay (BC) filler	55
3.1.2. Characterization of the prepared NPK fertilizers	57
3.1.2.1. Chemical characterization of the prepared NPK fertilizers	57
3.1.2.2. Physical characterization of the prepared NPK fertilizers	58
3.1.2.2.1. Effect of fillers on the particle size distribution	59
3.1.2.2.2. Effect of fillers on the crushing strength of NPK fertilizer	63
granules	
3.2. SECTION TWO: Formation and characterization of the	
prepared sulfur sludge filter aid	67

3.2.1. Characterization of raw materials	69
3.2.1.1. Characterization of Kessel Gohar diatomite	69
3.2.1.2. Characterization of Abu Zaabal 12 (AB12)	70
3.2.1.3. Characterization of sulfur sludge filter aid (SS)	71
3.2.2Effect of sulfur sludge filter aid on the ash content in filtrated sulfur	
and comparing it with different filter aids	72
3.2.3. Effect of sulfur sludge filter aid on rate of filtration and comparing	
it with different filter aid	75
3.2.4. Effect of reusing sulfur sludge produced after every cycle in	
manufacture of filter aid.	76
CONCLUSION	77
SUMMARY	80
REFERENCES	85
ARABIC SUMMARAY	

List of Figures

List of Figures

Figure		Page
1	Uses of sulfuric acid	1
2	The two allotropes of sulfur	2
3	Handling, melting, filtration and storage of sulfur	4
4	Manufacturing of sulfuric acid by contact process	5
5	Step1-Filling filter	9
6	Step2 –pre-coating the filter	10
7	Step 3-pump pre-coat to dirty sulfur tank	10
8	Step 4-Recirculatedirty sulfur back to dirty Sulfur tank until sulfur meets requirements	11
9	Step5 –send clean sulfur to storage	11
10	Step 6 –purge filter with air/steam to remove sulfur and dry filter cake	12
11	Step 7 – open filter and discharge filter cake	12
12	Mechanism of filtration with filter aid	29
13	Schematic simple flow chart of manufacturing process of NPK fertilizers	43
14	Calibration curve of phosphorus determination	47
15	Calibration curve of potassium determination	50
16	Calibration curve of sodium determination	51
17	Effect of fillers on the granulometric composition of the NPK fertilizers (formula 2: 20: 20)	62
18	Effect of fillers on the granulometric composition of the NPK fertilizers (formula 7: 14: 7)	62
19	Dependence of the crushing strength value on the diameter of the NPK fertilizers granules (formula 2:20: 20)	67
20	Dependence of the crushing strength value on the diameter of the NPK fertilizers granules (formula 7:14:7)	67
21	Effect of fillers on the granulometric composition (marketable fraction) of different NPK	68
22	Effect of fillers on the crushing strength of different NPK fertilizer formulations fertilizer formulations	68
23	Effect of using different filter aids on ash content in molten sulfur filtrate	73

24	Amount of ash content deposited in the catalyst beds per years with using different filter aid in filtration	74
25	of molten sulfur Effect of different filter aid on rate of filtration	75
25	Effect of different filler and on rate of filliation	13
26	Effect of reusing sulfur sludge produced after every cycle in manufacture of filter aid	76