

Molecular and Serological Studies on Family Chlamydiaceae in Camel and Small Ruminants in the Egyptian Desert

Thesis submitted for Ph.D. degree in Science (Microbiology)

By **Sahar Ali Hussein Allam**

M.Sc. (Microbiology-2006)

Supervisors

Prof. Mohamed Khaled Ibrahim

Professor of Bacteriology Vice Dean for Education and Student Affairs Faculty of Science -Ain Shams University

Prof. Wafaa A. Osman

Professor of Microbiology-Head of Animal Health Department Division of Animal Production and Poultry- Desert Research Center

Dr. Sahar Tolba Mohamed

Assistant Professor of Microbiology-Microbiology Department Faculty of science -Ain Shams University

Dr. Amani. A.A. Hafez

Associated Researcher Professor of Microbiology-Animal Health
Department
Division of Animal Production and Poultry- Desert Research Center

Department of Microbiology Faculty of Science, Ain Shams University

Approval sheet

Name : Sahar Ali Hussein Allam

Title : Molecular and Serological Studies on Family *Chlamydiaceae*

in Camel and Small Ruminants in the Egyptian Desert

Supervisors

Prof. Mohamed Khaled Ibrahim

Professor of Bacteriology, Vice Dean for Education and Student Affairs Faculty of Science Ain Shams University

Prof. Wafaa A. Osman

Professor of Microbiology, Head of Animal Health Department, Division of Animal Production and Poultry Desert Research Center

Dr. Sahar Tolba Mohamed

Assistant Professor of Microbiology-Microbiology Department, Faculty of science Ain Shams University.

Dr. Amani, A.A. Hafez

Associated Researcher Professor of Microbiology Animal Health Department, Division of Animal Production and Poultry Desert Research Center

Examination committee

Prof. Rawia Fathy Gamal

Professor of Microbiology, Faculty of Agriculture,

Ain Shams University.

Prof. Hadia Abd Elraheem Ali Mousa

Professor of Virology, Head of Chlamidia Research Unit, Animal Health Research Institution.

Prof. Mohamed Khaled Ibrahim

Professor of Bacteriology, Vice Dean for Education and Student Affairs Faculty of Science Ain Shams University.

Prof. Wafaa A. Osman

Professor of Microbiology, Head of Animal Health, Department, Division of Animal Production and Poultry Desert Research Center.

Date of Discussion

Approval date / /

University Council Approved / /

بسم الله الرحمن الرحيم

لَّهُ الْهَ الْمَا الْهُ الْمَا الْهُ الْهَ الْمَا عَلَمْ الْهَ الْمَا عَلَمْ الْهَ الْهَ الْمَا عَلَمْ الْهُ الْمَا عَلَمْ الْمُعَالِمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعْلَمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعَلِيمُ الْمُعْلَمُ الْمُعَلِيمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلِمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلِمُ الْمُعْلِمُ الْمُعْلِمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلِمُ الْمُعْلِمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ الْمُعْلَمُ اللَّهُ الْمُعْلِمُ اللَّهُ الْمُعْلَمُ اللَّهُ الْمُعْلَمُ اللَّهُ الْمُعْلَمُ اللَّهُ الْمُعْلَمُ اللَّهُ الْمُعْلَمُ اللَّهُ اللَّهُ الْمُعْلِمُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللّمُ اللَّهُ الْمُعْلَمُ اللَّهُ اللَّ

حدق الله العظيم

(الايه 32 من سورة البعرة)

Acknowledgements

I would like to express my deepest graduate to Prof. Dr. Mohamed Khaled Ibrahim, Professor of Bacteriology - Vice Dean for Education and Student Affairs, Faculty of Science, Ain Shams University, Cairo Egypt, for his continuous guidance and encouragement throughout this work. The completion of this work is due to his support. It was an honor to work under his supervision.

I am really thankful for **Prof. Dr. Wafaa Osman Professor of Microbiology-**Head of Animal Health Department, Division of Animal Production and Poultry

Desert Research Center for her continuous encouragement, and guidance.

I am extremely indebted to **Dr. Sahar Tolba Mohamed, Associate Professor of**Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

for providing me with unlimited care, guidance, supervision, continuous

encouragement for her patience and for all valuable things I learnt in work and life

from her. I am sincerely lucky to be her student.

Thanks for Dr. Amani. Hafez, Associated Researcher Professor of Microbiology-Animal Health Department, Division of Animal Production and Poultry Desert Research Center for her support.

I can't forget the help of Dr. Hassan Elsaed Abdo El-metwally, Researcher in Camel Development and Studies Center Matrouh and Dr. Asma Abdalla Ragab Darwish Researcher in the sustainable development of matrouh resources center during difficult conditions when obtaining camel samples, Great thanks for them.

Deep thanks to Dr. Ahmed Ali Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia For his valuable scientific support.

Finally I would like to thank all my family for their kind help and encouragement.

To my family

هكر {الحمد و الشكر لله سبحانه و تعالى}

أتقدم بخالص شكرى و تقديرى الى السادة الأساتذة المشرفين و هم:-

- 1- أ.د/ محمد خالد ابراهيم -أستاذ البكتريولوجي-
- وكيل الكلية لشوؤن التعليم والطلاب كلية العلوم جامعة عين شمس
 - 2- أ.د/ وفاء عبد اللطيف عثمان-أستاذ الميكروبيولوجي-
 - رئيس قسم صحة الحيوان- شعبة الانتاج الحيواني
 - 3- د/ سحر طلبه محمد طلبه أستاذ الميكروبيولوجى المساعد قسم الميكروبيولوجى كلية العلوم جامعة عين شمس
- 4- د/ أمانى عبد النبى أحمد حافظ -أستاذ باحث الميكروبيولوجى المساعد قسم صحة الحيوان- شعبة الانتاج والدواجن مركز بحوث الصحراء
 - كما أشكر الجهات و الهيئات التي تعاونت معي و هي:-
 - مركز بحوث الصحراء
 - معهد دراسات وبحوث الابل –محافظة مطروح.
 - مركز التنمية المستدامة لموارد مطروح.

Contents

	Abstract	
1.	Introduction	1
2.	Literature review	5
	2. 1.Taxonomy of Chlamydiae	5
	2. 1. 1. History of chlamydial Taxonomy	5
	2. 1. 2.Dissimilarities concerning <i>Chlamydiae</i> and	
	Rickettsiae	5
	2. 2. Morphology and life cycle	8
	2. 3. Macromolecules and antigens	9
	2. 3. 1. Lipopolysaccharides	9
	2. 3. 2. Structural outer membrane proteins	10
	2. 4. Genome and genetic feature	11
	2. 4. 1. Structure, Size, and Diversity	11
	2.4.2. Chlamydial Plasmid	12
	2. 4. 3. Chlamydiophages	13
	2. 5. Treatment	13
	2.6. Definite syndromes caused by genus of <i>Chlamydia</i>	
	in man and animals	15
	2. 7. Epidemiology	16
	2. 7. 1. Enzootic abortion of ewes and goats	16
	2. 7. 2. Transmission and zoonotic significance	18
	2. 7. 2. Other chlamydial infections	20
	2. 7. 4. <i>Chlamydiae</i> from intestinal and abortifacient	
	Infections	21
	2. 8. Diagnosis	23
	2. 8. 1. Serological examination	23
	2. 8. 1. 1. Complement Fixation Test	23
	2. 8. 1. 2. Enzyme linked immunosorbent assay and	
	its modifications	24
	2. 8. 1. 3. Relationship between CFT, ELISAs and	
	other diagnostic methods	25
	2. 8. 2. Polymerase Chain Reaction (PCR)	29
	2.8.2.1.Real time PCR for detection of	
	Chlamydiaceae	29
	2. 8. 2.2 Real time PCR and its statistics	32

3.	Materials and Methods	35
	3.1. Animals	35
	3.1.1. Camels	35
	3.1.2. Small ruminants	35
	3.2. Sampling and sample preparation	36 36
	-	36
	3.2.1.1. Serum Preparation	
	3.2.2. Collection of swab samples	36
	3.2.2.1. Swabs Preparation	38
	3.3. Molecular characterization by qPCR	39
	3.3.1. Isolation of genomic DNA	39
	3.3.2. Quantification of <i>Chlamydiaceae</i> by real time	
	PCR (qPCR)	39
	3.3.2.1. Real-time PCR mixture	40
	3.3.2.2. Standard curve preparation	40
	3.3.2.3. Real-time PCR protocol	41
	3.4. Serological characterization	41
	3.4.1. Enzyme Linked Immunosorbent Assay (IDEXX	
	ELISA)	41
	3.5. Statistical analysis	42
	3.5.1. One sample t-test	42
	3.5.2. Two independent sample t –test	43
	3.5.3. Levene`s test	43
	3.5.4. Kruskal Wallis test	43
	3.5.5. Chi-square test.	43
	3.5.6. Contingency coefficient	43
	3.5.7. Bar Chart	44
	3.5.8. Clustered Bar Chart	44

	3.5.9. Pearson corrleation coefficient	44
	3.5.10. Linear regression	44
4.	Results	45
	4.1.Quantification of <i>Chlamydiaceae</i> by real time PCR	45
	4.1.1.Quantification of Chlamydiaceae in camels	
	by real time PCR	45
	4.1.1.1Statistical analysis for real time PCR of Camels	45
	4.1.2.Quantification of <i>Chlamydiaceae</i> in ewes by real time PCR.	48
	4.1. 3.Quantification of <i>Chlamydiaceae</i> in she-goats by	
	real time PCR	48
	4.1.4. Statistics for real time PCR (qrt-PCR)	52
	4.1.5. Comparison between the positivity of	52
	Chlamydiaceae in camels, ewes and she-goats 4.2. Serological studies	54
	4.2.1.Detection of <i>Chlamydophila abortus</i> in camels	٥.
	using IDEXX ELISA	54
	4.2.1.1. Statistical analysis of ELISA results in camels	58
	4.2.2. Detection of <i>Chlamydophila abortus</i> in ewes using IDEXX ELISA	59
	4.2.2.1 Statistical analysis of ELISA results in ewes	61
	4.2.3. Detection of <i>Chlamydophila abortus</i> in she-goats	
	using IDEXX ELISA	61
	4.2.3.1. Statistical analysis of ELISA of she-goats	62
	4.2.4. Comparison between camels, ewes and she-goat	
	in ELISA	63
	4.2.5. Comparison between camels, ewes and she-goats,	62
	ELISA results in Alexandria (Al-Amria) 4.3 Relation between results got by real time PCR and	63
	IDEXX- ELISA	64
	4.3.1 Relation between results got by IDEXX-ELISA	- 1
	and qrt- PCR in camels	64