

### "Antifungal Activity of some Desert Plant Extracts Against some Clinical Isolates and Chemical Elucidation of the Bioactive Compounds"

For Fulfillment of Philosophy Degree of Science in Microbiology

Thesis
Submitted by
Heba Sayed Ibrahim Salim

M.Sc. in Microbiology (2010)

#### **Under Supervision of**

### (The late) Prof. Dr. Al Zahraa Ahmed Karam El-Din

Professor of Mycology and Medical Mycology, Microbiology Department, Faculty of Science, Ain Shams University

### Prof. Dr. Adel Ahmed Ramadan El Mehalawy

Professor of Mycology, Microbiology Department, Faculty of Science, Ain Shams University

### Prof. Dr. Enas Ibraheem Mohamed Hassan

Professor of Phytochemistry, Head of Medicinal and Aromatic Plant Department, Desert Research Center

### Dr. Samar Samir Mohamed El-Sayed

Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

2018



# النشاط الضد فطرى لمستخلصات بعض النباتات الصحراوية ضد بعض العزلات الإكلينيكية و التوضيح الكيميائي للمركبات النشطة حيويا

رسالة مقدمة للحصول على درجة دكتوراة الفلسفة في العلوم (الميكروبيولوجي)

من هبة سيد ابراهيم سالم ماجيستير في العلوم (الميكروبيولوجي) عام (۲۰۱۰)

#### تحت اشراف

المرحومة أ.د./ الزهراع احمد كرم الدين استاذ الفطريات و الفطريات الطبية – قسم الميكروبيولوجي كلية العلوم - جامعة عين شمس

أ.د./ عادل احمد رمضان المحلاوى استاذ الفطريات – قسم الميكروبيولوجى كلية العلوم - جامعة عين شمس

أ.د./ ايناس ابراهيم محمد حسن استاذ كيمياء النبات و رئيس قسم النباتات الطبية و العطرية مركز بحوث الصحراء

د./ سمر سمير محمد السيد مدرس بقسم الميكروبيولوجي – كلية العلوم جامعة عين شمس



### **Approval Sheet**

**Title of thesis**: Antifungal Activity of some Desert Plant Extracts

Against some Clinical Isolates and Chemical

Elucidation of the Bioactive Compounds.

Name of student: Heba Sayed Ibrahim Salim

**Degree:** Philosophy Degree of Science in Microbiology

This thesis has been approved by

#### Prof. Dr. Hussein Hosny El-Sheikh

Professor of Microbiology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University.

#### Prof. Dr. Salama A. Ouf

Professor of Microbiology, Botany and Microbiology Department, Faculty of Science, Cairo University.

#### Prof. Dr. Adel Ahmed El Mehalawy

Professor of Mycology and Physiology of Microorganism, Microbiology Department, Faculty of Science, Ain Shams University.

#### Prof. Dr. Enas Ibraheem Mohamed

Professor of Phytochemistry, Head of Medicinal and Aromatic Plants Department, Desert Research Center.

Date of examination: 18 - 12 - 2018

### إهداء

أمدي مذة الرسالة الى روح أ.د./ الزمراء احمد كرم الدين استاذ الفطريات و الفطريات الطبية قسم الميكروبيولوجي كلية العلوم جامعة عين شمس التي يرجع لما الفضل في مذا العمل العلمي جعلة اللة في ميزان حسناتها أمين

## Acknowledgement

First and foremost, many thanks are due to Almighty GOD, the most precious and the most merciful, to whom I owe mercy, support, guidance and directing me to the right way in my life.

It is really difficult for me to find suitable words that could express my deep gratitude and sincere appreciation to word Prof. Dr. Al Zahraa A. Karam El-Din Professor of Microbiology in Faculty of Science-Ain-Shams University, Microbiolog Department, for supervision, revising the text, valuable discussion and support. I would like to express my great appreciation to Prof. Dr. Adel A. Ramadan Al. Mehalawy, Professor of Mycology, Microbiology Department, for supporting the supervision, revising the manuscript and following up the student after death of Dr. El-Zahraa. I wish to thank. I would like to express my great appreciation to Prof. Dr. Enas l.Mohamed Professor of Phytochemistry and Head of Medicinal and Aromatic Plant Department, Desert Research center, for supervision, revising the text, valuable discussion and support. I would like to express my great appreciation to Dr. Samar S. Mohamed, Lecture of Microbiology, Faculty of Science - Ain- Shams University, Microbiology Department, for supervision and for his kind assistance, keen interest, and valuable advice. I am grateful to

In addition, special thanks go to my friends in Desert Research center and National Research center for their assistance with technical issues. Finally, I would like to thank my parents, who had a great influence on my personal and professional life, without their encouragement, it was impossible to finish this work.



This dissertation has not previously been submitted for a degree at this or at any other university and is the original Work of the writer

Heba Sayed Ibrahim

### **List of CONTENTS**

| Title                                                       | Page No. |
|-------------------------------------------------------------|----------|
| List of Content                                             | i        |
| List of Tables                                              | iv       |
| List of Figures                                             | V        |
| List of Abbreviations                                       | vi       |
| CHAPTER I . Introduction & Literature Review                |          |
| Introduction                                                | 1        |
| 1. Emerging fungal infections in immunocompromised patients | 4        |
| 2. Fungal pathogenesis                                      | 5        |
| 3. Infection by Candida                                     | 6        |
| 4. Other yeasts infection (Trichosporonosis)                | 8        |
| 5. Aspergillus species infection                            | 9        |
| 6. Antifungal drugs                                         | 10       |
| 6.1. Polyenes                                               | 11       |
| 6.2. Azoles                                                 | 11       |
| 6.3. Allylamines                                            | 12       |
| 6.4. Echinocandins                                          | 12       |
| 6.5. Fluorinated pyrimidine analog                          | 13       |
| 7. Natural products from plant sources                      | 16       |
| 8. Major groups of antifungal compounds from plants         | 16       |
| 8.1. Alkaloids                                              | 16       |
| 8.2. Terpenoids and essential oils                          | 17       |
| 8.2.1.General overview                                      | 17       |
| 8.2.2.Biological activity of essential oils                 | 18       |
| 8.2.2.1.Antifungal activity                                 | 18       |
| 8.3. Phenolics                                              | 19       |
| 8.3.1. Flavonoids                                           | 20       |
| 8.3.2. Tannins                                              | 20       |
| 8.3.3 Phenolic acids                                        | 21       |
| 8.4. Coumarins:                                             | 22       |
| 9. Combined herb drug therapy                               | 23       |
| 10. Medicinal Plants under Investigation                    | 24       |
| 10.1 Mesembryanthemum crystallinum L. (Ice plant)           | 26       |
| 10.2. Nicotiana glauca R. C. Graham                         | 26       |
| 10.3. Peganum harmala L.                                    | 27       |

| 10.4. Atriplex halimus L.                                                  | 28 |
|----------------------------------------------------------------------------|----|
| 10.5. Brassica tournefortii Gouan                                          | 29 |
| 10.6. Alhagi maurorum Medic                                                | 29 |
|                                                                            |    |
| CHAPTER II. Materials & Methods                                            |    |
| 1. Samples collection                                                      | 32 |
| 1.1. Collection and identification of plants                               | 32 |
| 1.2. Tested fungal species                                                 | 32 |
| 2. Media and reagents used                                                 | 33 |
| 3. Preparation of crude plant extracts                                     | 34 |
| 3.1. The ethanolic crude extracts                                          | 34 |
| 3.1. The water extracts                                                    | 34 |
| 4. Fractionation by different organic solvent                              | 34 |
| 5. Antifungal activity testing                                             | 34 |
| 5.1 Antifungal standard drug                                               | 34 |
| 5.2. Inoculum preparation of tested fungal species                         | 35 |
| 5.3. Susceptibility testing                                                | 35 |
| 5.3.1. Screening antifungal activity using agar diffusion method           | 35 |
| 5.3.2. Combination testing                                                 | 36 |
| 5.3.3. Determination of the minimum inhibitory concentration (MIC)         | 36 |
| 5.3.4. Determination of the minimum fungicidal concentration (MFC)         | 36 |
| 6. In vitro cytotoxicity using (MTT) assay                                 | 37 |
| 6.1. Cell line and cell culture                                            | 37 |
| 6.2. Sub-culturing of cells                                                | 37 |
| 6.2.1 Hemocytometer                                                        | 38 |
| 6.2.2 Cell count with trypan blue                                          | 38 |
| 6.3. Cell cytotoxicity determination by MTT assay                          | 38 |
| 7. Mode of action studies                                                  | 40 |
| 7.1.Determination of ergosterol content in the plasma Membrane             | 40 |
| 7.2. Determination of endogenous reactive oxygen species (ROS)             | 41 |
| production                                                                 |    |
| 7.3. Effect of the plant extract on cell membrane integrity                | 41 |
| 8. Microscopic study of fungal morphology                                  | 42 |
| 9. Chemical identification of most potent extracts                         | 42 |
| 9.1. Gas Chromatography/Mass Spectrometry                                  | 42 |
| 9.2. Chromatographic investigation of the most active extract of Alhagi    | 43 |
| maurorum Medic                                                             |    |
| 9.2.1. Paper Chromatography                                                | 43 |
| 9.2.2.Qualitative and quantitative determination of the phenolic compounds | 44 |

| using (HPLC) technique                                                              |    |
|-------------------------------------------------------------------------------------|----|
| 10. Statistical analysis                                                            | 45 |
|                                                                                     |    |
| CHPTER III. Experimental Results                                                    |    |
|                                                                                     |    |
| 1. Antifungal study                                                                 | 46 |
| 1.1.Susceptibility testing                                                          | 46 |
| 1.1.1. Screening antifungal activity using agar diffusion method                    | 46 |
| 1.1.2. Combination testing                                                          | 51 |
| 1.1.3. Determination of the minimum inhibitory concentration (MIC)                  | 53 |
| 1.1.4. Determination of the minimum fungicidal concentration (MFC)                  | 55 |
| 2. The cytotoxic activities of petroleum ether extract of <i>M. crystallinum</i> L. | 56 |
| 3. Mode of action studies                                                           | 57 |
| 3.1. Determination of ergosterol content in the plasma Membrane                     | 57 |
| 3.2. Determination of endogenous reactive oxygen species (ROS)                      | 58 |
| production                                                                          |    |
| 3.3. Effect of the plant extract on cell membrane integrity                         | 59 |
| 4. Microscopic study of fungal morphology                                           | 61 |
| 4.1. Observing morphological changes under light microscope                         | 61 |
| 4.2. Observing morphological changes under Atomic Force Microscopy                  | 63 |
| (AFM)                                                                               |    |
| 5.Phytochemical study                                                               | 66 |
| 5.1. Gas Chromatography/Mass Spectrometry                                           | 66 |
| 5.2. Chromatographic investigation of the most active extract of <i>Alhagi</i>      | 76 |
| maurorum Medic                                                                      |    |
| 5.3. Identification of phenolic compounds using HPLC                                | 77 |
|                                                                                     |    |
| CHPTER IV. Discussion                                                               |    |
| Summary                                                                             | 78 |
| References                                                                          | 90 |
| Arabic summary                                                                      | 93 |
|                                                                                     |    |
|                                                                                     |    |

### **LIST OF TABLES**

| Table No. | Title                                                                       | Page |
|-----------|-----------------------------------------------------------------------------|------|
|           |                                                                             |      |
| 1         | Antimicrobial mechanism of action of some phytochemicals                    | 23   |
| 2         | Human pathogenic fungal species                                             | 32   |
| 3         | Inhibition zone diameter of the ethanolic crude extracts of desert          | 48   |
|           | plants against tested fungal species using agar well diffusion method       |      |
| 4         | Inhibition zone diameters of selected desert plants extract extracts        | 49   |
|           | against tesed fungal species using agar well diffusion method               | 50   |
| 5         | Combined antifungal activity of different plant extracts and                | 52   |
|           | fluconazole against tested fungal species                                   |      |
| 6         | Combined antifungal activity of petroleum ether extracts of                 | 53   |
|           | Brassica tournefortii Gouan and Atriplex halimus L. against                 |      |
|           | tesed fungal species                                                        |      |
| 7         | MIC values of the most active desert plants extracts on tested              | 54   |
|           | human fungal species                                                        |      |
| 8         | MFC values of the most active desert plants extracts on tested              | 55   |
|           | human fungal species.                                                       |      |
| 9         | Reduction percent of ergosterol content in tested fungal species by         | 57   |
|           | petroleum ether extract of <i>M. crystallinum</i> .L.                       |      |
| 10        | The chemical constituents of the petroleum ether extract of                 | 68   |
|           | Mesembryanthemum crystallinum L.                                            |      |
| 11        | The chemical constituents of the petroleum ether extract of                 | 69   |
|           | Nicotina glauca R. C. Graham                                                |      |
| 12        | The chemical constituents of the petroleum ether extract of                 | 70   |
|           | Peganaum harmala L.                                                         |      |
| 13        | The chemical constituents of the petroleum ether extract of <i>Atriplex</i> | 71   |
|           | halimus L.                                                                  |      |
| 14        | The chemical constituents of the petroleum ether extract of                 | 72   |
|           | Brassica tournefortii Gouan                                                 |      |
| 15        | Comparison between common compounds in petroleum ether                      | 74   |
|           | extracts of the five tested plants                                          |      |
| 16        | Ethyl acetate extract of <i>Alhagi maurorum</i> Medic                       | 76   |
| 17        | Phenolic composition of ethyl acetate extract for <i>Alhagi maurorum</i>    | 77   |
|           | Medic                                                                       |      |
|           |                                                                             |      |

### **LIST OF FIGURES**

| Fig. No. | Title                                                                           | Page |  |  |
|----------|---------------------------------------------------------------------------------|------|--|--|
|          |                                                                                 |      |  |  |
| 1        | Antifungal drugs target in fungal cell                                          | 15   |  |  |
| 2        | Desert plants used in the study A: Mesembryanthemum crystallinum L.             | 25   |  |  |
|          | B: Nicotina glauca R.C. Graham, C: Peganaum harmala L., D:                      |      |  |  |
|          | Atriplex halimus L.: E, Brassica tournefortii Gouan and F: Alhagi               |      |  |  |
|          | maurorum Medic.                                                                 |      |  |  |
| 3        | The cytotoxicity of the petroleum ether extract of <i>M. crystallinum</i> L.    | 56   |  |  |
| 4        | Effect of petroleum ether extract of Mesembryanthemum                           | 58   |  |  |
|          | crystallinum L. on the generation of endogenous ROS                             |      |  |  |
| 5        | Effect of petroleum ether extract of Mesembryanthemum                           | 59   |  |  |
|          | crystallinum L. on nucleic acid content                                         |      |  |  |
| 6        | Effect of petroleum ether extract of Mesembryanthemum                           | 60   |  |  |
|          | crystallinum L. on protein content.                                             |      |  |  |
| 7        | Morphological changes in Candida albicans induced by                            | 61   |  |  |
|          | Mesembryanthemum crystallinum L. (A) Control untreated cells,                   |      |  |  |
|          | (B) cells treated with sub - MIC extract concentration, (C) cells               |      |  |  |
|          | treated with the sub- MFC extract concentration                                 |      |  |  |
| 8        | Morphological changes in A. fumigatus induced by                                | 62   |  |  |
|          | Mesembryanthemum crystallinum L. (A) Contro untreated cells,                    |      |  |  |
|          | (B) cells treated with sub - MIC extract concentration, (C) cells               |      |  |  |
|          | treated with the sub- MFC extract concentration                                 |      |  |  |
| 9        | Topographic images of <i>C. albicans</i> cells, (A): untreated control cells,   | 64   |  |  |
|          | (B): cells treated with Sub-MIC of extract, (C): cells treated with             |      |  |  |
|          | Sub-MFC of extract                                                              |      |  |  |
| 10       | Topographic images of <i>A. fumigatus</i> , (A): untreated control cells,       | 65   |  |  |
|          | (B): cells treated with Sub-MIC of extract, (C): cells treated with             |      |  |  |
|          | Sub-MFC of extract                                                              |      |  |  |
| 11       | GC- MS of petroleum ether extract of A: Mesembryanthemum                        | 73   |  |  |
|          | crystallinum L., <b>B</b> : Nicotina glauca R. C. Graham, <b>C</b> : Peganaum   |      |  |  |
|          | harmala L., <b>D</b> : Atriplex halimus L. and <b>E</b> : Brassica tournefortii |      |  |  |
|          | Gouan.                                                                          |      |  |  |
| 12       | HPLC of ethyl acetate extract of Alhagi maurorum Medic                          | 77   |  |  |
|          |                                                                                 |      |  |  |
|          |                                                                                 |      |  |  |

### **LIST OF ABBREVIATIONS**

| ABBERVIATION | ITEM                                                         |
|--------------|--------------------------------------------------------------|
| AFM          | Atomic Force Microscopy                                      |
| °C           | Degree Celsius                                               |
| CLSI         | Clinical and Laboratory Standards Institute                  |
| DCFH-DA      | 2',7'-dichlorofluorescein diacetate                          |
| DMSO         | Dimethyl sulfoxide                                           |
| GC-MS        | Gas Chromatography- Mass Spectrometry                        |
| h            | Hour                                                         |
| HPLC         | High Performance Liquid Chromatography                       |
| IC50         | 50% Inhibitory Concentration                                 |
| L            | Liter                                                        |
| mg           | Milligram                                                    |
| μg           | Microgram                                                    |
| μL           | Microliter                                                   |
| mL           | Milliliter                                                   |
| MIC          | Minimum Inhibitory Concentration                             |
| MFC          | Minimum Fungicidal Concentration                             |
| MTT          | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| NCCLS        | National Committee of Clinical Laboratory Standards          |
| NAC          | Non-Albicans Candida                                         |
| PDA          | Potato Dextrose Agar                                         |
| PDB          | Potato Dextrose Broth                                        |
| ROS          | Reactive Oxygen Species                                      |

| rpm  | Revolutions per minute          |
|------|---------------------------------|
| RPMI | Roswell Park Memorial Institute |
| s    | Second                          |
| TLC  | Thin Layer Chromatography       |
| UV   | Ultraviolet                     |
| WHO  | World Health Organization       |

# Abstract

Antifungal activities of six selected Egyptian desert plants belonging to families Aizoaceae, Brassicaceae, Solanaceae, Fabiaceae, Zygophyllaceae and Chenopodiaceae were investigated against six human pathogenic fungal species (Candida albicans, Candida tropicalis, Trichosporon sp., Aspergillus fumigatus, Aspergillus flavus and Aspergillus versicolor). Aqueous as well as organic crude extracts of the selected desert plants were screened against the different human pathogenic fungal species. Results demonstrate that the non-polar fraction of Mesembryanthemum crystallinum L. and Atriplex halimus L. exhibited the most antagonistic activity. The MIC values of fractions against yeasts and moulds ranged from 0.195 to 6.25 mg/ml, whereas the fungicidal activity ranged from 0.781 - 12.5 mg/ml. Notably, the majority of combinations between plant extracts and antifungal drugs and/or plant fractions showed synergistic antifungal activities against the tested fungal species. As for the possible mechanism for the observed antifungal activity of the petroleum ether fraction of M. crystallinum L., a significant reduction in the ergosterol content and leakage of plasma and cellular membranes of the tested fungal species was noticed. Cytotoxic test demonsted that the petroleum ether fraction of M. crystallinum L. is more toxic to fungal cells than mammalian cell.

#### **CHAPTER I**

#### INTRODUCTION

Mycotic diseases are global in distribution, but maximum cases are recorded from subtropical and tropical countries. Mycoses are important from public health and economic point of view. Globally, 800 million people in the world have suffered from one or other types of fungal diseases. Candida, Aspergillus, Pneumocystis and Cryptococcus are important opportunistic fungi responsible for high mortality, especially in immunocompromised patients. Candida species are the fourth most common cause of nosocomial bloodstream infections. The source of infection is exogenous, and infection is mainly acquired by inhalation of infectious fungal spores from the saprobic environment. The demonstration of fungal agent and its isolation from clinical specimens is still considered the gold standard the diagnosis of mycotic disease. Several systemic and topical drugs are available for the controlling of disease, but most of them are expensive and have Therefore, development of cheap, safe and potent many side effects. chemotherapeutic agents is imperative for the management of mycoses, which cause life threatening disease (Pal, 2017).

Plant constituents are proved to be one of the most promising antimicrobial sources as they are considered to be safer compared with synthetic compounds because of their natural origin (Rajeh et al., 2010; Abreu et al., 2012; Savoia, 2012 and Upadhyay et al., 2014). It is well known that about quarter part of current medications is derived from compounds of plant source (Rates, 2001 and WHO, 2014). Plant derived components could have other target sites than synthetic antimicrobials and subsequently having different mechanisms of action against microorganisms (Ahmad & Beg, 2001; Upadhyay et al., 2014 and Petrosyan et al., 2015). Plant secondary metabolites are mostly responsible for their antimicrobial properties (Savoia, 2012).