

Absorption of Aflatoxins by Lactic Acid Bacteria

Thesis
Submitted to the Faculty of Science
Ain Shams University
In partial fulfillment of the requirements for masterDegree
In Microbiology

By Aia Adel Fahmy Hosny

B.Sc. Microbiology-Chemistry (2009)

Under the Supervision of

Dr. Nagwa Ahmed Abd-Allah

Prof. of Microbiology Faculty of Science Ain Shams University

Dr. Einas Hamed El-Shatoury

Ass. Prof. of Microbiology Faculty of Science Ain Shams University

Dr. Hala Ahmed Hussein

Prof. of Microbiology Department at Atomic Energy Agency

Acknowledgments

At first, I thank GOD for strengthening and blessing me in all aspects of my life.

My deepest thanks, heartfelt appreciation and endless gratitude to **Professor Dr. Hala Ahmed Hussien** Professor of Microbiology at Atomic Energy Agency, for her continuous help, precious guidance, thoughtful supervision, and unique support throughout the development of the thesis.

I would like to express my sincere gratitude and everlasting thanks to **Professor Dr. Nagwa Ahmed Abd-Allah,** Professor of Microbiology, Faculty of Science, Ain Shams University, for his kind supervision, valuable advice, endless cooperation, helpful instruction, generous support, revising the thesis, interest in and concern about my progress.

I am greatly indebted and grateful to **Professor Dr. Einas Hamed Al-El shatoury** Ass. professor of Microbiology, Faculty of Science,
Ain Shams University, for her helpful instructions, guidance,
generous support, and helpful advice throughout this work.

Aia Adel Fahmy Hosny

CONTENTS

		Page
		Number
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
	1. Aflatoxins in Foods	4
	2.Physicochemical properties of Aflatoxins	5
	3.Biological effect of aflatoxins	6
	4. Control of aflatoxins	8
	5. Lactic acid bacteria	9
	5.1. General description	9
	5.2.Lactic acid bacteria as probiotics	10
	5.3. Ability of LAB to inhibit fungal growth of	11
	Aspergillus species	
	6. Binding of aflatoxins by lactic acid bacteria	12
	6.1. Role of cell viability in binding process between	13
	AFB ₁ by LAB	
	6.2. Effect of incubation time in binding of AFB ₁ by	16
	LAB	
	6.3. Effect of pH and temperature in binding of AFB ₁ by	17
	LAB	
	7. Nature of aflatoxin binding by LAB	18
3.	MATERIALS AND METHODS	20
	Materials	20
	1.Isolation Media	20
	1.1. De man, Rogosa and Sharpe (MRS) agar	20
	1.2. Sabouraud agar	21
	2.Radiation gamma source	21
	3.Fungal inoculation	22
	Methods	22
	1. Isolation of lactic acid bacteria	22
	1.1. Isolation of LAB from dairy products	22
	1.1. a. Milk	22
	1.1. b. Cheese and yoghurt	23
	1.2. Isolation from non-dairy products	23
	1.2.a. Isolation from bread- dough	23

		Page
		Number
	1.2.b. Isolation from honey	23
	1.3. Characterization of isolates	24
	1.4- Identification of bacterial isolates by 16S ribosomal	24
	RNA	
	2. Aflatoxin Standard preparation	24
	3.Aflatoxin Binding Assay	25
	4. Quantification of Aflatoxin in Supernatant Fluid	26
	Samples	
	Binding Assay using viable, acid and heat treated cells	27
	6. Influence of incubation time on AFB ₁ binding process	27
	7. Effect of Temperature on AFB ₁ binding process	27
	8. Influence of different pH on AFB ₁ binding process	28
	9. Complex stability	28
	10. Radiation	29
	11. Inhibition of growth of Aspergillus sp by LAB	29
	12.Binding by partially purified bacterial cell wall	30
	fragments	
	13. Statistical Analysis	30
4.	RESULTS	31
	1. Isolation of lactic acid bacteria from different sources	31
	1.1. Samples collection	31
	1.2. Isolates identification	33
	1.3. Isolates selection	39
	2. Ability of the LAB isolates for aflatoxin B ₁ binding	39
	3. Identification of selected LAB	40
	4. Optimization of binding process	44
	4.1. LAB viability effect on AFB ₁ binding	44
	4.2.Influence of incubation time on AFB ₁ binding by	45
	LAB.	
	4.3. Influence of incubation temperature on the AFB ₁	48
	binding by LAB	
	4.4. Influence of pH on the AFB ₁ binding by LAB	49
	5.Stability of the lactic acid bacteria–aflatoxin complexe	51
	5.1. Untreated cells-AFB ₁ complexes stability	51

		Page
		Number
	5.2. Complex stability between AFB ₁ and	52
	treated/untreated cells of selected isolates	
	5.2.a. Complex stability of <i>Lc. lactis</i> /AFB ₁	52
	5.2.b. Complex stability of <i>Lb. acidophilus</i> /AFB ₁	53
	5.2.c. Complex stability of <i>Lb. rhamnosus</i> /AFB ₁	55
	5.2.d.Complex stability of <i>Lb. fermentum</i> /AFB ₁	56
	5.2.e. Complex stability of <i>Ec. faecium</i> /AFB ₁	57
	6.Binding of Aflatoxin B ₂ and G ₂ by probiotic LAB	59
	7. Inhibition of fungal growth by LAB	60
	8. Influence of Radiation on viable bacterial pellets to	61
	bind AFB ₁	
	9. Influence of adding cell wall fragments in AFB ₁	63
	binding	
5.	DISCUSSION	65
6.	CONCLUSION	78
7.	SUMMARY	79
8.	REFERENCES	83
	ARABIC SUMMARY	

List of Tables

Table		Page	
Number		Number	
1	Diversity of LAB in the collected samples		
2 Phenotypic characteristics of the isolates		34	
3	LAB binding Capacities of selected isolates to	40	
	remove AFB ₁		
4	Identification, Description, Source and binding	43	
	capacities of selected isolates		
5	5 Percentage of AFB ₁ binding by viable cells, heat-		
	and acid-treated bacterial cells		
6	6 Influence of incubation time (hr) on AFB ₁ binding		
	by viable cells		
7	7 Influence of incubation time (min) on AFE		
	binding by viable cells of LAB		
8 Influence of incubation temperature on the AFB ₁		49	
	binding by viable cells of LAB isolates		
9	9 Influence of pH on the AFB ₁ binding by viable		
	cells of LAB strains		
10	Percentage of AFB ₁ remaining bound by viable	51	
	cells after five washes with distilled water		
11	Effect of washing on Lc. lactis	53	
12	Effect of washing on Lb. acidophilus	54	
13	Effect of washing on Lb. rhamnosus	55	
14	Effect of washing on Lb. fermentum	56	
15	Effect of washing on Ec. faecium	58	
16	Binding ability of LAB isolates to reduce Aflatoxin	59	
	B_2 and G_2		
17			
	Aspergillus flavus and Aspergillus parasiticus		
18 Influence of gamma radiation on binding ability		62	
	of LAB		
19	Effect of cell wall fractions in reduction of AFB ₁	64	
	by Lb. rhamnosus (treated and untreated cells)		

Lists of Figures

Figure		Page		
Number		Number		
1	Structures of aflatoxins			
2	The percentage of cocci and bacilli collected	32		
	from different sources			
3				
	milk	4.4		
4	Phylogenetic tree of isolate 2M obtained from milk	41		
5	Phylogenetic tree of isolate 4Ch obtained from	42		
6	Cheese. Dhylogopatic tree of ignlete IV obtained from	42		
U	Phylogenetic tree <i>of isolate 1Y</i> obtained from yoghurt.	42		
7	Phylogenetic tree of isolate 3Y obtained from	43		
	yoghurt.			
8	Percentage of AFB ₁ bound on exposure to viable	45		
	cells, heat- and acid-treated bacteria.			
9	Influence of incubation period (h) on AFB ₁	46		
	binding by untreated cells of LAB.			
10	Influence of short incubation time (min) on AFB ₁	48		
	binding by untreated cells of LAB.			
11	Influence of incubation temperature on AFB ₁	49		
	binding by untreated cells of LAB.			
12	Effect of pH on the AFB ₁ binding by untreated	50		
40	cells of LAB isolates.			
Percentage of AFB ₁ initial binding by viable cel		52		
	and remaining bound to the bacteria after five			
1.4	washes with 1ml of distilled water.	53		
14				
1.5	bacterial pellets of <i>Lc. lactis</i> after five washes.			
Percentage of AFB ₁ remaining bound to		54		
	bacterial pellets of <i>Lb. acidophilus</i> after five washes.			
16		56		
16	Percentage of AFB ₁ remaining bound to the bacterial pellets of <i>Lb. rhamnosus</i> after five	5 0		
	-			
	washes with 1ml of distilled water			

Figure		Page		
Number		Number		
17	Percentage of AFB ₁ remaining bound to the	57		
	bacterial pellets of Lb. fermentum after five			
	washes with 1ml of distilled water.			
18	Percentage of AFB ₁ remaining bound to the 58			
	bacterial pellets of <i>Ec. faecium</i> after five washes.			
19	19 Binding activity of LAB to remove different			
	types of aflatoxin B_2 and G_2 .			
20	Inhibitory effect of LAB isolates on growth of			
	Aspergillus flavus and parasiticus			
21	Influence of radiation on AFB ₁ binding by LAB			

List of abbreviation

Aflatoxin B ₁	AFB ₁
Aflatoxin B ₂	AFB ₂
Aflatoxin G ₂	AFG_2
Aflatoxins	AFs
Aspergillus flavus	Asp. flavus
Aspergillus parasiticus	Asp. parasiticus
De man, Rogosa and Sharpe agar	MRS agar
Enterococcus	Ec
Grey	Gy
Lactic acid Bacteria	LAB
Lactobacillus	Lb
Lactococcus	Lc
Optical density	OD
Phosphate Buffer solution	PBS

INTRODUCTION

Mycotoxins are toxic fungal metabolites found as contaminants in many agricultural products. Feeds and foodstocks contaminated with mycotoxins have a health risk to animals, human and cause big economical losses (CAST, 2003 and Richard, 2007). Aflatoxins (AFs) are secondary metabolites produced by *Aspergillus flavus* and *Aspergillus parasiticus*. AFs represent a group of closely related difuranocoumarin compounds (Mishra and Das, 2003), they are potent hepatocarcinogens in human (IARC, 1993). Aflatoxin B₁ (AFB₁) is considered one of the most potent carcinogenic agents in nature (Zinedine *et al.*, 2005). Its ingestion is associated with hepatic and renal necrosis, mutagenic, carcinogenic, tetratogenic and immunosupptessive effects, as well as Reye syndrome (Bennett and Klich 2003; Ruiqian *et al.*, 2004).

Aflatoxins have been found in many foods and animal feeds and their production can be influenced by several factors including; temperature, water activity, pH, available nutrients and competitive growth of other microorganisms (Ellis et al., 1991). The incidence of AFs is worldwide but is typically much higher in tropical and subtropical regions, where warmer climates provide optimal conditions for mould growth. *Aspergillus* genus grow on grains (corn, sorghum, millet) ,beans ,peanuts and tree nuts (almonds, pistachios, etc.) during growth, harvest, storage and transportation

so fungal contamination occure easily, make its prevention difficult (Pereyra et al., 2010).

Numerous pre- and post harvest methods have been used for detoxification or inactivation of aflatoxins, including physical separation, thermal inactivation, irradiation and chemical treatments (Rustom, 1997). Once food is contaminated with aflatoxin, there are only two options if the food is to be used: either the toxin is removed or the toxin is degraded into less toxic or non-toxic compounds. The first option is allowed when aflatoxin is present in identifiable pieces of food which can be removed from the remainder of the lot, or when solvents can be used to extract aflatoxin without leaving unwanted residues or markedly altering the composition of the food. As for the second option, a variety of methods have been developed. Aflatoxin may be degraded by physical, chemical, biological methods (Park, 1993). Physical methods to aflatoxin destruction involve treating with heat, UV light or ionizing radiation. These current methods are not very effective. Chemical degradation of aflatoxin is usually carried out by the addition of chlorinating, oxidizing or hydrolytic agents. Chemical treatments require expensive equipment and may result in losses of nutritional quality of treated commodities. In addition, the undesirable health effects of such treatments have not been fully evaluated (Samarajeewa et al., 1990 and Phillips et al., 1994).

New strategies involving use of microorganisms for biological detoxification of aflatoxin have been investigated. Specific strains of lactic acid bacteria have the ability to remove mutagenic contaminants from food (Turbic et al., 2002; Corthier, 2004). The studies reported that certain *Lactobacilli* and *Bifidobacteria* can bound AFB₁ from liquid solution (El-Nezami et al., 1998a; Peltonen et al., 2000, 2001; Haskard et al., 2001). Also, LAB are known to inhibit mold growth and bind aflatoxins in different matrices. Reduced mold growth and aflatoxin production may be caused by competition for nutrients between bacterial cells and fungi or due to antifungal compounds produced by LAB. Binding of aflatoxins depends on environmental conditions and is strain-specific (Haskard et al., 2001; Peltonen et al., 2001 and Ahlberg et al., 2015). The present study aimed to isolate local strains of LAB that can bind AFB₁ with high efficiency.

REVIEW OF LITERATURE

1. Aflatoxins in Foods

Aflatoxinxs (AFs) poisonous carcinogenic are compounds produced by Aspergillus flavus and Aspergillus parasiticus which grow in soil, decaying vegetation, hay, and They are regularly found in improperly stored commodities such as chili peppers, corn, cotton seeds, peanuts, rice, sesame seeds, sorghum, sunflower seeds, tree nuts, wheat, and a variety of spices. When contaminated food is processed, aflatoxins enter the general food supply where they have been found in both pet and human foods, as well as in feed stocks for agricultural animals. Aflatoxins have an undeniable role in the deterioration of the marketable quality and hygiene of foodstuffs. So these toxins have been identified and responsible for significant problems in foodstuffs (Azizollahi et al., 2013)

Among mycotoxins, aflatoxins are the most toxic. There are different types of aflatoxins B_1 , B_2 , G_1 and G_2 , also M_1 and M_2 as metabolic products of AFB₁. AFB₁ to G_2 belong to Group 1 carcinogen, M_1 and M_2 belongs to Group 2 carcinogen, AFB₁ is the most carcinogenic type of aflatoxins (IARC, 2002) and causes acute and chronic intoxication in humans and animals (Shetty et al., 2007). The metabolized aflatoxin M_1 (AFM₁) and M_2 are

excreted into the tissues, biological fluids and milk of lactating animals including humans (IARC, 2002).

2. Physicochemical properties of Aflatoxins

The aflatoxins compounds are colorless to pale yellow crystals. Fluorescence in ultraviolet (UV) light is blue by aflatoxins B_1 and B_2 , and green fluorescence by aflatoxins G_1 and G_2 . Afs optically active and have a strong absorbance at about 365 nm with a fluorescence emission of 415–450 nm, depending on the solvent or physical status. The aflatoxins are soluble in a range of organic solvents such as chloroform, ethanol, methanol, and acetone, and insoluble in lipophylic solvents such as hexane, petroleum ether, and diethyl ether. The molecular formula of aflatoxin B_1 is $C_{17}H_{12}O_6$, and of aflatoxin G_1 is $C_{17}H_{12}O_7$; aflatoxins B_2 and G_2 were found to be the dihydro derivatives of the parent compounds, $C_{17}H_{14}O_6$ and $C_{17}H_{14}O_7$ (Moss, 2003).

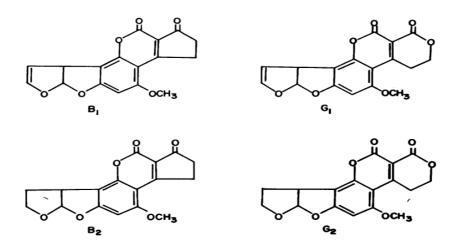


Figure (1): Structures of aflatoxins

3. Biological effect of aflatoxins

Exposure to aflatoxins can cause aflatoxicosis and severe hepatotoxicity and hepatocellular carcinoma, resulting in mortality reaching to 25%. Moreover AFs side effects rate suppression, impaired immunological growth, nutritional interference, teratogenic, neurotoxic, nephrotoxic and hepatotoxic (Williams et al., 2004 and Strosnider et al., 2006). Aflatoxininduced liver cancer cases occur globally each year of which 40% are estimated to be in Africa. Co-occurrence of AFB₁ with hepatitis B increases the liver cancer risk 12-fold. Data from Wu and Tritscher (2011) and Wild, (2007) reported that children are more susceptible to acute hepatotoxicity from ingested aflatoxins than adults.

AFB₁ is metabolized predominantly by the cytochrome P450 enzyme system to produce highly reactive AFB1-8,9-epoxide which forms covalent adducts with macromolecules, such as proteins and DNA. The 8,9-epoxide of AFB₁ is short-lived but highly reactive and is capable of causing damage to cells in the liver and at the intestinal interface. Direct damage caused by aflatoxin exposure within the intestine may alter nutrient uptake (Gratz *et al.*, 2007). Aflatoxin does not accumulate in muscle meat, but is excreted in milk, urine, and feces and is found also in blood. Accepted exposure levels are different due to the wide