Acknowledgement

First and foremost, praises and thanks to Allah, Al-Kareem, for his showers of blessings throughout my research work to complete this dissertation successfully.

I would like to express my deep gratitude to **Prof. Dr. Hamdy Hamed Swelim**, Professor of Cell Biology and Histology, Zoology Department, Faculty of Science, Ain Shams University, for his keen interest and devoted work to produce this thesis as clear as possible.

I would like to express my respectful thanks to **Prof. Dr. Ali Mohamed Ali Abd El-Aal**, Professor of Physiology, Zoology

Department, Faculty of Science, Ain Shams University, for his fruitful notes and stimulating generous support during the whole time of thesis writing.

I am greatly indebted to **Dr. Salwa Mohamed Mahmoud El-Hallouty**, Associate Prof. of Biochemistry, Pharmacognosy Department, National Research Center, for her great effort with me during laboratory work and continuous help whenever needed. Also, many thanks to **Dr. Radwa Donia**, Research Assistant, National Institute of Nutrition, Ministry of Health, for her help in statistical analysis.

I would like to thank all of my family, especially my parents, whose love and help had motivated me to achievements beyond my own expectations as well as my friends who encouraged me during this work.

Contents

List of Abbreviations i
List of Tables v
List of Figures vi
Abstract 1
Introduction3
Aim of the work7
Literature Review8
Hepatocellular carcinoma (HCC) definition8
Distribution of HCC and its causes 8
HCC in Egypt9
HCC risk factors9
HCC mortality rate10
Treatment of HCC10
Natural products and venoms as treatment 10
Sea anemone toxin 11
• Bee venom
Spider venom14
• Scorpion venom15
Snake venom
Materials and Methods25
Materials25

Venom25
Cell line25
Methods25
Cell culture25
Cell count26
MTT assay 26
Morphological study28
Preparation for Transmission Electron
Microscopy29
Biochemical Analyses 31
Statistical Analyses33
Results
MTT assay 34
Morphological study 35
Electron Microscopy45
Biochemical Analyses 110
Discussion
Summary 126
References129
الملخص العربي
المستخلص

LIST OF ABBREVIATIONS

A549	Human lung adenocarcinoma cells.
ANOVA	One-way analysis of variance.
Av	Autophagic vacuoles.
BJcuL	Lectin from the venom of the snake <i>Bothrops</i>
	jararacussu.
BjV	Bothrops jararaca venom.
BmK	Buthus martensi Karsch.
BV	Bee venom.
CCV	Cerastes cerastes venom.
CN	Contortrostatin.
CrTX	Crotoxin.
CTX III	Cardiotoxin III.
DNA	Deoxyribonucleic acid.
DTNB	5, 5 dithiobis (2 –nitrobenzoic acid).
EAT	Ehrlich ascites tumor.
F	Filopodia.
FBS	Fetal bovine serum.
Fis1	Mitochondrial fission 1 protein.
g	Glycogen granules.
G	Golgi cisternae.
GSH	Glutathione reduced.

H. lepturus	Hemiscorpious lepturus.
H_2O_2	Hydrogen peroxide.
HBV	Hepatitis B virus.
HCC	Hepatocellular carcinoma.
HCV	Hepatitis C virus.
HeLa	Human cervical carcinoma cells.
HEp-2	Human laryngeal carcinoma cells.
HepG-2	Human hepatocellular carcinoma cell line.
IC ₅₀	The half maximal inhibitory concentration.
K	Karyolysed nucleus.
K562	Human erythroleukemic cell line.
Kr	Karyorrhexis of the nucleus.
L	Lipid globules.
LAAO	L-amino acid Oxidase.
LD ₅₀	Median lethal dose.
Lp	Lipofuscins.
Ly	Lysosomes.
M	Mitochondria.
MCF-7	Human breast cancer cells.
MDA	Malondialdehyde.
Mf	Myelin figures.
MTT	3-(4, 5-dimethylthiazol-2-yl)-2, 5-

	diphenyltetrazolium bromide.
N	Nucleus.
NCI-H292	Human lung mucoepidermoid carcinoma cells.
Ne	Nuclear envelope.
Nu	Nucleolus.
OHAP-1	Okinawa Habu apoxin protein-1.
OsO ₄	Osmium tetroxide.
P	Peroxisomes.
PBS	Phosphate buffer saline.
Pk	Pyknotic nucleus.
PLA ₂ S	Phospholipase A ₂ s.
Pm	Plasma membrane.
RER	Rough endoplasmic reticulum.
ROS	Reactive oxygen species.
SCLC	Small cell lung cancer cell line.
SD	Standard deviation.
SDS	Sodium dodecyl sulfate.
SEM	Standard error of mean.
SER	Smooth endoplasmic reticulum.
SPSS	Statistical package for social science.
SVT	Snake venom toxin.
TAC	Total antioxidant capacity.
TBA	Thiobarbituric acid.

TEM	Transmission electron microscope.
U251-MG	Malignant glioma cells.
V	Vacuoles.

List of Tables

No.	Table	Page
1	Effect of <i>Cerastes vipera</i> venom on GSH of HepG-2 cells.	110
2	Effect of <i>Cerastes vipera</i> venom on MDA of HepG-2 cells.	112
3	Effect of <i>Cerastes vipera</i> venom on TAC of HepG-2 cells.	114

List of Figures

No.	Figure	Page
1	Cytotoxicity of <i>Cerastes vipera</i> crude venom toward HepG-2 cells (1×10 ⁴ cells/ml) after 24 h incubation at 37 °C, 5 % CO ₂ . Cell viability was determined by the MTT assay.	34
2	Photomicrograph representing the morphological characterization of control HepG-2 cells for 1 hour.	38
3	Photomicrograph representing the morphological characterization of control HepG-2 cells for 3 hours.	38
4	Photomicrograph representing the morphological characterization of control HepG-2 cells for 6 hours.	38
5	Photomicrograph representing the morphological characterization of control HepG-2 cells for 24 hours.	38
6	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to 0.5 IC ₅₀ dose for 1hour.	40
7	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to 0.5 IC ₅₀ dose for 3 hours.	40
8	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to 0.5 IC ₅₀ dose for 6 hours.	40

9	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to 0.5 IC ₅₀ dose for 24 hours.	40
10	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to IC ₅₀ dose for 1 hour.	42
11	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to IC ₅₀ dose for 3 hours.	42
12	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to IC_{50} dose for 6 hours.	42
13	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to IC ₅₀ dose for 24 hours.	42
14	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to 2 IC ₅₀ dose for 1 hour.	44
15	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to 2 IC ₅₀ dose for 3 hours.	44
16	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to 2 IC ₅₀ dose for 6 hours.	44
17	Photomicrograph representing the morphological characterization of HepG-2 cells after exposure to 2 IC ₅₀ dose for 24 hours.	44
18-22	Electron micrographs of ultrathin sections of control HepG-2 cells.	46-51

23&24	Electron micrographs of ultrathin sections of HepG-2 cells treated with 0.5 IC ₅₀ of the crude venom for 1 hour.	53&54
25-27	Electron micrographs of ultrathin sections of HepG-2 cells treated with 0.5 IC ₅₀ of the crude venom for 3 hours.	56-59
28-31	Electron micrographs of ultrathin sections of HepG-2 cells treated with 0.5 IC ₅₀ of the crude venom for 6 hours.	61-64
32-35	Electron micrographs of ultrathin sections of HepG-2 cells treated with 0.5 IC ₅₀ of the crude venom for 24 hours.	66-69
36-39	Electron micrographs of ultrathin sections of HepG-2 cells treated with IC ₅₀ of the crude venom for 1 hour.	71-74
40-43	Electron micrographs of ultrathin sections of HepG-2 cells treated with IC ₅₀ of the crude venom for 3 hours.	76-79
44-47	Electron micrographs of ultrathin sections of HepG-2 cells treated with IC ₅₀ of the crude venom for 6 hours.	81-84
48-51	Electron micrographs of ultrathin sections of HepG-2 cells treated with IC ₅₀ of the crude venom for 24 hours.	86-89
52-55	Electron micrographs of ultrathin sections of HepG-2 cells treated with 2 IC ₅₀ of the crude venom for 1 hour.	91-94
56-59	Electron micrographs of ultrathin sections of HepG-2 cells treated with 2 IC ₅₀ of the crude venom for 3 hours.	96-99
60-63	Electron micrographs of ultrathin sections of HepG-2 cells treated with 2 IC ₅₀ of the crude	101- 104

	venom for 6 hours.	
64-67	Electron micrographs of ultrathin sections of HepG-2 cells treated with 2 IC ₅₀ of the crude venom for 24 hours.	106- 109
68	Effect of <i>Cerastes vipera</i> venom on GSH of HepG-2 cells for 1, 3, 6 and 24 hours.	111
69	Effect of <i>Cerastes vipera</i> venom on MDA of HepG-2 cells for 1, 3, 6 and 24 hours.	113
70	Effect of <i>Cerastes vipera</i> venom on TAC of HepG-2 cells for 1, 3, 6 and 24 hours.	115

Abstract

Snake venoms are mixtures of bioactive proteins, peptides and enzymes that stimulate diverse biochemical activities and that made them attractive sources for research into potentially novel therapeutics. In the current study, *Cerastes vipera* crude venom was chosen to study its efficiency in inducing significant cytotoxicity to cancer cell line HepG-2. We performed a cytotoxicity test, morphological studies by using inverted microscope, transmission electron microscope (TEM) investigations and biochemical analyses by estimating the levels of glutathione reduced (GSH), lipid peroxide/malondialdehyde (MDA) and total antioxidant capacity (TAC) to examine cytotoxic effects of different concentrations of *Cerastes vipera* crude venom toward the cancer cell line HepG-2 at different time intervals.

MTT cell viability assay of cancer cells incubated with crude venom revealed that the venom showed significant cytotoxicity, besides we determined the IC₅₀ of the venom. In general, the data proved that doses related to the IC₅₀ of viper venom were potently cytotoxic to HepG-2 cells. Morphological studies and ultrastructural