

Ain-Shams University

Faculty of Science Biochemistry Department

Purification and characterization of *Ficus carica* latex peroxidase with potential applications for decolorization of the dyes A THESIS

Submitted for the award of the Ph.D. degree of science in

biochemistry **By**

Alshaimaa Mohamed Elsayed Mohamed

M.Sc. in Biochemistry (2010),

SUPERVISED BY

Prof. Dr. **Ahmed Mohamed Salem**

Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain-Shams University

Dr. Marwa Galal Eldeen Abdo

Assistant Prof. of Biochemistry, Biochemistry Department, Faculty of Science, Ain-Shams University

Prof. Dr. **Afaf Saad Eldin Fahmy**

Professor of Biochemistry, Molecular Biology Department, National Research Centre

Dr. Somia Shaker Abdel-Ghany

Assistant Prof. of Biochemistry, Molecular Biology Department, National Research Centre

Dr. Usama Mohamed Hegazy

Assistant Prof. of Biochemistry, Molecular Biology Department, National Research Centre

Purification and characterization of *Ficus carica* latex peroxidase with potential applications for decolorization of the dyes

Researcher name: Alshaimaa Mohamed ELsayed Mohamed

Supervision Committee:

- Prof. Dr. **Ahmed Mohamed Salem,** Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University.
- Prof. Dr. **Afaf Saad Eldin Fahmy**, Professor of Biochemistry, Molecular Biology Department, National Research Centre.
- Dr. **Marwa Galal Eldeen Abdo,** Assistant Prof. of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University.
- Dr. **Somia Shaker Abdel-Ghany,** Assistant Prof. of Biochemistry, Molecular Biology Department, National Research Centre.
- Dr. Usama Mohamed Hegazy, Assistant Prof. of Biochemistry, Molecular Biology Department, National Research Centre.

Approval committee:

- Prof. Dr. El Said El Sherbini El Said Ahmed, Professor of Biochemistry, Faculty of Veterinary medicine, Mansoura University.
- Prof. Dr. Elsayed Mohamed Elsayed Mahdy, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Helwan University.
- Prof. Dr. Ahmed Mohamed Salem

Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University.

Prof. Dr. Afaf Saad Eldin Fahmy

Professor of Biochemistry, Molecular Biology Department, National Research Centre

Date of Examination 28/11/2018

سورة البقرة الأية: ٣٢

Abstract

Alshaimaa Mohamed Elsayed, Purification and characterization of *Ficus carica* latex peroxidase with potential applications for decolorization of the dyes

Ph. D. Thesis: Biochemistry Department, Faculty of Science, Ain- Shams University.

In the present study, three peroxidase isoenzymes were isolated from Ficus latex using chromatographic carica CM-Sepharose DEAE-Sepharose separation and on followed by Sephacryl S-200 column gel filtration. The complete purification was carried out for FP1 (0.1M NaCl / CM-Sepharose fraction of Ficus carica latex peroxidase) only due to the low level of activity and protein content of FP2 (0.1M NaCl / DEAE-Sepharose fraction of Ficus carica latex peroxidase) and FP3 (0.2M NaCl / DEAE-Sepharose fraction of Ficus carica latex peroxidase). The purified isoenzyme FP1 was found monomeric with a molecular weight of 30 kDa by electrophoresis on SDS-PAGE. FP1 and FP3 isoenzymes have the same pH and temperature optima at pH 5.5 and 40°C, respectively, while FP2 has optimum pH at 7.0 and optimum temperature at 30 °C. On the other hand, FP1 and FP2 were thermostable up to 40 and 50°C. respectively, whereas FP3 had a low thermostability at 30°C. FP1 isoenzyme was found to be stable between pH 5.0 to 7.5, and FP2 was stable between pH 4.5 and 7.5, while FP3 was found to be stable in acidic range between pH 4.5 and 5.5. The activity of FP1, FP2 and FP3 was decreased gradually by increasing the concentration of tested organic solvents (ethanol. methanol and DMSO). It was found that the activity of FP1, FP2 and FP3 was increased by increasing the concentrations of some metal cations and decreased by increasing the concentrations of other metal cations and some compounds (EDTA and NaN₃). The three peroxidase isoenzymes have a broad specificity towards some phenolic substrates and o-phenylenediamine showed higher affinity towards the three peroxidase isoenzymes, with K_m values of 3.87, 3.64 and 3.33 mM for FP1, FP2 and FP3, respectively. F. carica latex peroxidase isoenzymes and commercial horseradish peroxidase were able to decolorize many tested synthetic dyes and the extent of decolorization achieved with different dye classes were varied according to different chemical structure of each dve.

CONTENTS

Subject	Page
Acknowledgement	I-II
Dedication List of abbreviation	III IV-V
List of Figures	VI-VII
List of Tables.	VIII
Introduction	1
Aim of the work	4
1. Review of literature	5
1.1. Ficus carica	5
1.2. Latex	7
1.3. Peroxidase enzymes	8
1.4. Calssification of peroxidases	11
1.4.1. Plant peroxidases	12
1.4.2. Microbial peroxidase	16
1.4.2.1 Lignin peroxidase.	16
1.4.2.2 Manganese peroxidase	18
1.5. Three-dimensional structure of heme peroxidase	20
1.6. Mechanism of action of peroxidase	22
1.7. Applications of peroxidase	25
1.7.1. Synthetic dyes decolorization	27

Peroxidase mode of action in dyes decolorization	28	
1.7.2. Elimination of phenolic contaminants	34	
1.7.3.Deodorization of animal waste	35	
1.7.4. Paper and pulp industry	36	
1.7.5. Biosensors	36	
1.7.6. Analysis and diagnostic kits	37	
1.7.7. Enzyme immunoassays	38	
2. Materials and Methods	41	
2.1. Materials	41	
2.1.1. Chemicals and buffers	41	
2.1.2. Plant material	42	
2.2. Methods	42	
2.2.2. Benzene fractionation	42	
2.2.3. Determination of protein concentration	43	
2.2.4. Determination of peroxidase activity	45	
2.2.5. Purification of peroxidase isoenzymes from	46	
Ficus carica latex using column		
chromatography		
2.2.5.1. CM-Sepharose column chromatography	46	
2.2.5.2. DEAE-Sepharose column chromatography		
2.2.5.3. Sephacryl S-200 column	47	
2.2.6.Molecular weight determination	48	
a) By gel filtration on Sephacryl S-200	48	

b) SDS - Polyacrylamide gel electrophoresis	50
2.2.7. Optimum temperature and thermal stability.	53
2.2.8. pH optimum and stability	54
2.2.9. Effect of solvents on the activity of <i>Ficus carica</i>	
latex peroxidase isoenzymes	55
2.2.10. Effect of metals and some compounds on the	
activity of Ficus carica latex peroxidase	
isoenzymes	55
2.2.11. Substrate Specificity	56
2.2.12. Kinetic constants	56
2.2.13. Dye decolorization by Ficus carica latex	
peroxidase isoenzymes	57
2.2.14. Effect of some dyes concentrations on	
biological decolorization rate of these dyes by two F .	
carica latex peroxidase isoenzymes	65
3. Results	67
3.1 Purification of peroxidase isoenzymes from F.	
caricalatex	67
3.1.1. Ion exchange column chromatography	67
a) CM-Sepharose column chromatography	67
b) DEAE -Sepharose column chromatography	68
3.1.2. Gel filtration on a Sephacryl S-200 column	72
3.1.3. Determination of molecular mass of <i>F. carica</i>	

latex peroxidase isoenzyme FP1	74
3.2 Characterization of <i>F. carica</i> latex peroxidase	
isoenzymes	76
3.2.1. Effect of temperature on the activity of <i>F. carica</i>	
latex peroxidase isoenzymes	76
3.2.2. Thermal stability behavior of F. carica	
latexperoxidase	77
isoenzymes	
3.2.3. Effect of pH on the activity of F. carica latex	
peroxidase isoenzymes	80
3.2.4. pH stability behavior of F. carica	
latexperoxidase	82
isoenzymes	
3.2.5.Effect of organic solvents on the activity of F.	
carica latexperoxidase isoenzymes	84
3.2.6. Effect of metal ions and some compounds on the	
activity of F. carica latex peroxidase	
isoenzymes	86
3.2.7. Effect of Substrate specificity on the activity of <i>F</i> .	
carica latexperoxidase isoenzymes	89
3.2.8. Kinetic constants of <i>F. carica</i> latex peroxidase	
isoenzymes	90
3.3.Application of F. carica latex peroxidase	

isoenzymes in dyes decolorization	104
3.3.1. Decolorization of different dyes by <i>F. carica</i>	
latex peroxidase isoenzymes and horseradish	
peroxidase	104
3.3.2 Effect of concentration of some dyes on	
biological decolorization rate of these dyes by two F .	
carica latex peroxidase isoenzymes	108
4-Discussion	113
5-Summary	135
6-References	141
Arabic Summary	Í

ACKNOWLEDGEMENT

First and foremost, my great praise and sincere thanks should be submitted to **ALLAH**, the kindest and the most merciful, for the kind and continuous support to me.

I wish to express my sincere appreciation to **Prof. Dr. Ahmed Mohamed Salem**, Professor of Biochemistry,

Biochemistry Department, Faculty of Science, Ain-Shams

University, for his valuable guidance, continuous encouragement,

supervision and unlimited support during this study.

I would like to express my sense of gratitude to **Prof. Dr. Afaf Saad Eldin Fahmy,** Professor of Biochemistry, Molecular Biology Department, National Research Centre, for suggesting the theme of this study, her valuable guidance, continuous encouragement, and support she provided throughout my research study and thesis preparation.

I'm also indebted and truly thankful for **Dr. Marwa Galal Eldeen Abdo**, Assistant Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain-Shams University, for her encouragement, kind advices throughout the study and supervision.

I'm also grateful to **Dr. Somia Shaker Abdel-Ghany,** Assistant Professor of Biochemistry, Molecular Biology