

"Radiographic evaluation of the effect of implant number retaining fixed detachable lower single denture designed by CAD/CAM "

Thesis

Submitted for the partial fulfillment of the requirements of Doctor Degree requirement in Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University

$\mathbf{B}\mathbf{y}$

Omar Abbas Ahmad Esmat El Sadat

B.D.S., (2009) M.Sc., (2015) Ain Shams University

Faculty of Dentistry
Ain Shams University
2018

Supervisors

Dr. Ingy Amin Talaat

Professor of Prosthodontics

Oral and Maxillofacial Prosthodontics Department
Faculty of Dentistry

Ain-Shams University

Dr. Ahmed Mohamed Osama

Assistant Professor of Prosthodontics
Oral and Maxillofacial Prosthodontics Department
Faculty of Dentistry - Ain Shams University

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

(قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَمْ لَنَا إِلَّا عَلَمُ لَنَا إِلَّا مَا عَلَمْتَنَا الْعَلِيمُ مَا عَلَمْتَنَا الْعَلِيمُ الْحَكِيمُ)

صدق الله العظيم

سورة البقرة الآية: ٣٢

ACKNOWLEDGEMENT

I'm very grateful to Allah for without his graces and blessings, this study would not have been possible.

Immeasurable appreciation and deepest gratitude to *Prof. Dr. Ingy Amin Talaat*, Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University, under whose supervision I had the honor to proceed with this study, for her support and words of encouragement and also for giving a long period of time to finish this work.

I would like to express my deepest thanks to *Dr. Ahmed Mohamed Osama*, Assistant Professor of Prosthodontics, Faculty of Dentistry, for His intensive supervision, kind help, valuable comments and guidance during this work.

I owe special thanks to my colleagues, and staff members of Prosthodontics Department, Faculty of Dentistry, Ain Shams University.

Dr. Omar El Sadat

DEDICATION TO

My mother

A strong and gentle soul who taught me to trust in allah.

My dear father

I hope that this achievement will complete the dream that you had for me all those many years ago, proud of you forever

My sister

Thank you for your encouragement and support.

My Grand Mother

This is all for you for the support you gave me since my first years in egypt

"التقييم الاشعاعي لتأثيرعدد الغرسات في حالات الاطقم السفلية الفردية المثبتة القابلة للخلع المصممة و المصنعة بالكمبيوتر"

رسالة مقدمة الى كلية طب الأسنان جامعة عين شمس كجزء من مقومات الحصول على درجة الدكتوراه في الأستعاضة الصناعية للفمو الوجه و الفكين

مقدمتامن

عمر عباس عصمت السادات

بكالوريوس طبالفم والآسنان ٢٠٠٩ ماجستير الأستعاضة الصناعية ٢٠١٥ جامعة عين شمس

> كلية طب الفم والأسنان جامعة عين شمس ٢٠١٨

إشراف

ا.د/إنجى امين طلعت

أستاذ بقسم الإستعاضة الصناعية كلية طب الأسنان جامعة عين شمس

أ.م/ أحمد محمد أسامة شوقي

أستاذ مساعد بقسم الإستعاضة الصناعية بكلية طب الأسنان جامعة عين شمس

CONTENTS

	Page
LIST OF FIGURES	I
LIST OF TABLES	IV
INTRODUCTION	1
REVIEW OF LITERATURE	4
AIM OF THE STUDY	48
MATERIAL AND METHODS	49
RESULTS	76
DISCUSSION	86
SUMMARY	100
CONCLUSION	102
RECOMMENDATION	103
REFERENCES	104
ARABIC SUMMARY	-

LIST OF FIGURES

Fig. No	Title	Page No.
(1)	Cone beam CT evaluation of the Case	53
(2)	lower single denture	56
(3)	Radiographic fiduciary spherical markers on lower denture	57
(4)	Dual scan procedure	57
(5)	Planning Implant position with images superimposed on CBCT	58
(6)	CBCT Scan of denture(having markers) in patients mouth	59
(7)	Laser Scan of denture (having markers)	59
(8)	Implant planning on the mandibular ridge (front view)	60
(9)	Implant planning on the mandibular ridge(side view)	60
(10)	Implant planning on the mandibular ridge(top view)	61
(11)	Superimposing Implant plan on the prosthesis' image	61
(12)	Superimposing implant plan on the CBCT and on the prosthesis scan	62
(13)	Metallic Sleeve planning on superimposed images and fixation holes	63
(14)	3D surgical guide	63

(15)	Adaptation & fixation of surgical guide by pt's occlusion & anchorage pins	64
(16)	Tissue punching through the surgical guide sleeves	65
(17)	Sequential drilling for each implant through the surgical guide	65
(18)	Implant Insertion guided	66
(19)	Implant Insertion guided	66
(20)	four of the six planned implants inserted until stopper meets the guide intimately	66
(21)	Torque controller wrench was used to tighten the implants	67
(22)	Smart Osstell peg	68
(23)	Smart Osstell peg	68
(24)	Smart Osstell peg	68
(25)	Intra oral view after removal of the surgical guide and placement of gingival formers	68
(26)	Open tray copings screwed onto implant analogues on cast, splinted and ready to be separated and transferred to patients mouth for resplinting	70
(27)	Special tray Constructed on relieved impression copings with holes created against each screw head	70
(28)	Impression Copings rescrewed in patients mouth and ready to be resplinted	70
(29)	Open tray impresson technique with open tray transfer copings and implant analogues attached. (Group I and Group II)	71

(30)	CAD planning of prosthesis	72
(31)	PMMA trial in the patient's mouth	73
(32)	Zirconium delivery in the patient's mouth	73
(33)	Postoperative panoramic radiograph showing the 6 implants	75
(34)	Bar chart showing mean difference of bone loss (mm) in group (I)	78
(35)	Bar chart showing mean difference of bone loss (mm) in group (II)	79
(36)	Bar chart showing mean bone loss (mm) in both groups	81
(37)	Bar chart showing mean difference of bone loss (mm) in terminal abutments of group (I)	82
(38)	Bar chart showing mean difference of bone loss (mm) in terminal abutments of group (II)	83
(39)	Bar chart showing mean bone loss (mm) in terminal abutments of both groups	85

LIST OF TABLES

Table No	Title	Page No.
(1)	Mean difference and standard deviation (SD) values of bone loss (mm) in group (I)	77
(2)	Mean difference and standard deviation (SD) values of bone loss (mm) in group (II)	78
(3)	Mean, Standard deviation (SD) values of bone loss (mm) in both groups	80
(4)	Mean difference and standard deviation (SD) values of bone loss (mm) in terminal abutments of group (I)	81
(5)	Mean difference and standard deviation (SD) values of bone loss (mm) in terminal abutments of group (II)	83
(6)	Mean, Standard deviation (SD) values of bone loss (mm) in terminal abutments of both groups	84

INTRODUCTION

INTRODUCTION

The mandibular edentulous ridge opposing dentate maxillary arch is one of the most perplexing problems in removable prostheses. The occlusal form of the remaining teeth makes it difficult to achieve harmonious balanced occlusion. The remaining teeth may be malposed, tilted and or over erupted. As a result, occlusion and articulation involve contacting steeply inclined planes of cusps in such a way that the denture is thrust horizontally causing problems in the stability of the denture. In addition, the impact of occlusal forces induced by the static dentate maxillary arch during function initiates deleterious effects on supporting tissues. (1)

Several treatment options were suggested to rehabilite individuals with mandibular single complete denture. The use implants to support and and or retain mandibular single complete denture proved to be an effective treatment modality. The use of implant retained mandibular overdenture offers considerable functional advantages. Preservation of the residual ridges, tactile discrimination, improvement of masticatory performance, retention and stability, maintaining occlusion and vertical dimension have been reported in the literature. (1)

Implant treatment options may range from the use of removable implant supported over denture to the creation of fixed implant supported prosthesis. An alternative to fixed prosthesis is the fixed detachable prosthesis (Screw-Retained Dentures). The Treatment planning is balanced between the patient preferences, finances, and clinical factors. (1)

Screw-Retained Dentures offer a fixed implant solution for edentulous patients desiring a stable and esthetic replacement for removable prostheses. Furthermore they may be successfully used in combination of tilted and axially placed implants in the posterior part or resorbed dental arch.

The fixed detachable prosthesis can be made on a variable number of implants, with a minimum of four, although there ideally should be placed the biggest number of implants that is possible. However, in the completely edentulous mandible problems such as minimum bone volume, poor bone quality, and the need for bone-grafting procedures prior to implant placement create some challenging conditions.

Various material combinations including metal/acrylic, (with metal frame work and resin), multi-unit ceramo-metal restorations, CAD/CAM-based restorations with metal or zirconia frameworks, or monolithic zirconia have been used for constructing fixed detachable prosthesis. (2)

The ongoing research for aesthetic and biocompatible materials has favored using all ceramic reconstructions for fixed dental prostheses (FDPs) as alternatives to conventional porcelain fused to metal (PFM) prostheses. High strength metal oxide ceramics have been developed to overcome the mechanical drawbacks and high fracture rates of earlier all ceramic systems. Zirconium oxide (ZrO2 or zirconia) has gained increasing popularity in contemporary dentistry due to its high biocompatibility, low plaque surface adhesion, high flexural strength, absence of mucosal discoloration, and aesthetic properties. (2)

Computer-aided design/ computer-aided manufacturing (CAD/CAM) technology has gain popularity in implant dentistry. The applications of 3-dimensional (3-D) imaging (computerized tomography scan), 3-D software for treatment planning, fabrication of computer- generated surgical guides using additive prototyping, as well as fabrication of all-ceramic restorations significantly improves implant therapy. (2)