

Ain Shams University
Faculty of Science
Geology Department

Geochemical characteristics of stream sediments and water resources of El-Allouga area and its vicinity, southwestern Sinai: Environmental implications

$\mathbf{B}\mathbf{y}$

Randa Ramadan Said El Sayed

B.Sc. in Geology, Ain Shams University (2013)

A Thesis

Submitted to the Geology department

Faculty of Science, Ain Shams University

In Partial Fulfillment of

Master Degree in Science "Geology"

Ain Shams University
Faculty of Science
Geology Department

Geochemical characteristics of stream sediments and water resources of El-Allouga area and its vicinity, southwestern Sinai: Environmental implications.

By

Randa Ramadan Said El Sayed

B.Sc. in Geology, Ain Shams University (2013)

A Thesis

Submitted for Partial Fulfillment of Master Degree of Science in Geology.

Ain Shams University.

Prof. Yehia H. Dawood

Professor of Mineralogy and geochemistry, Geology Department, Ain Shams University.

Prof. Mohamed Mokhtar Yehia

Professor of Hydrogeochemistry, Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center, El Kanater.

Dr. Ahmed Gad Abd El Wahed

Lecturer of Environmental Geology, Geology Department, Ain Shams University

APPROVAL SHEET

Title of the M.Sc. Thesis

Geochemical characteristics of stream sediments and water resources of El-Allouga area and its vicinity, southwestern Sinai: Environmental implications.

Candidate Name

Randa Ramadan Said El Sayed

Submitted to

The Department of Geology Faculty of Science, Ain Shams University

This thesis has been approved for submission by the supervisors

Prof. Yehia H. DawoodAin Shams University

Prof. Mohamed Mokhtar YehiaNational Water Research

Center, El Kanater

Dr. Ahmed Gad Abd El WahedAin Shams University

ABSTRACT

Mineralogy, geochemistry and radioactivity of the stream sediments and water resources in southwestern Sinai were investigated using collaborative techniques. Four wadis were selected for the present study; namely Wadi Nasieb, Wadi Baba, Wadi El-Seih and Wadi El-Sahu. These wadis are located close to the known occurrences of uranium, cupper, manganese and rare earth bearing mineralizations. The study area is covered by rock exposures ranging in age from Precambrian to Permo-Triassic. Forty nine samples were collected from the studied areas including sediments, groundwater and country rocks of water wells.

Textural and mineralogical characteristics of the stream sediments revealed that the clay minerals are present mostly as kaolinite and illite. The heavy minerals are dominated by opaques, pyroxenes, amphiboles, zircon, tourmaline, rutile, epidote, kyanite, sillimanite, monazite, staurolite, barite, xenotime and apatite. Autunite and Goyazite are reported for the first time in these sediments. Autunite forms encrustation on colloidal iron oxide grains whereas goyazite is found as prismatic grains. The two minerals show considerable contents of Rare Earth Elements, mainly Ce, La, Pr, Sm and Nd. Texturally, the unimodal grain size distribution, the subangular to subrounded grains and the poorly sorting class denotes short transportation distance from one source area. Mineralogically, the low ZTR index indicates a mineralogical immature to sub-mature sediments. The prismatic ultrastable zircon, tourmaline and rutile and the dominance of unaltered amphibole and pyroxene grains as well as absence of chlorite indicate that the source rocks are mainly the nearby exposed basement units. The presence of uranyl minerals and rare earth bearing phosphate minerals in these sediments reflect a contribution from the Palaeozoic sedimentary successions.

The stream sediments of the study area is characterized by cations pattern as Na⁺< Ca²⁺< K⁺< Mg²⁺ and anions as Cl⁻< HCO₃⁻< NO₃⁻. Strong +ve correlations between these elements indicate the occurrence of major salts (sodium chloride and calcium, magnesium carbonate). The heavy metals are found mainly in the stream sediments in the accessory minerals such as galena, pyrite, ilmenite, barite and pyrolusite and not adsorbed on clays or organic matters. Although the enrichment factors of some metals such as Cu, Zn and Pb show very high to extremely severe enrichment, but compared to the maximum allowable limit of heavy metals in soil, the stream sediments in the study area are considered not polluted with respect to toxic heavy metals.

For groundwater, the cations pattern is $Na^+>Ca^{2+}>Mg^{2+}>K^+$, and the anions is $CI>SO_4^{2-}>HCO_3^->NO_3^->F>NO_2^-$. Most of the heavy metals in groundwater samples are under maximum contamination level except Al and Mn. The excess of alkaline earth elements (Ca and Mg) over HCO_3 in groundwater indicates additional sources of Ca and Mg, most probably supplied by silicate weathering. The concentration of some elements in groundwater such as Cr, Cu and Mg reflect the effect of water-rock interaction in the leaching of these elements. The major ions (Na, Mg, Ca, Cl, and HCO_3) are relatively enriched in the groundwater reflecting their relative high mobility, while heavy metals e.g. Cu, Zn, Mn, Cr, Ba and Ni show more affinity for the country rocks.

Most of stream sediments from the studied wadis have eU concentrations more than the average of U in the earth's crust. Wadi El Sahu stream sediments display the highest contents of eU, eTh and ⁴⁰K compared to the other wadis indicating derivation from the nearby granitic rocks to this wadi. Unlike other heavy metals, the significant correlations between eU, clay contents and organic matters, reflect the adsorption of U to the surface of clays and organic matters. The association of eU and Fe indicates precipitation of uranyl minerals on iron oxide grains in the stream sediments. This association is also observed in the source rocks.

All groundwater samples exceed the Maximum Contamination Level (MCL) of groundwater uranium (30 ppb). So, the available water resources in the study area are considered unsafe for human consumption and irrigation. The lack of correspondence of uranium concentrations in the country rocks and associated groundwater reflects the high mobility of uranium and indicates that there does not exist a simple rock/water equilibration.

Uranium distribution in the groundwater is largely dependent on the high solubility and mobility of this element and on the salinity of the groundwater. Both surface and subsurface waters in the study area have 234 U/ 238 U activity ratios with obvious deviations from secular equilibrium. The isotope data indicates no mixing relations between water of different wells. The uranium isotopic data support that U ore body could locally be forming within rock aquifer at El-Allouga area (234 U/ 238 U activity ratio at El-Allouga drilled well = 14). This very high activity ratio most probably reflects uranium deposition from water.

Dedicated to

My father's soul

My mother

My sovely husband

ACKNOWLEDGEMENTS

First of all, praise is due to almighty ALLAH for his compassion and mercifulness that allowed me finish this work

The author would like to express her deep appreciation to the National Water Research Center, El Kanater and Nuclear materials authority for providing the facilities during the progress of this research work.

I am greatly indebted and deeply grateful to the supervisors of this thesis: **Prof. Yehia H. Dawood** (Geology department, Faculty of science, Ain Shams University), **Prof. Mohamed Mokhtar Yehia** (National Water Research Center, El Kanater) and **Dr. Ahmed Gad Abd El Wahed** (Geology department, Faculty of science, Ain Shams University for their immense knowledge, close supervision, sincere guidance, fruitful discussions and a continuous support

My gratitude also to **Prof. Ibrahim E. El Aassy,** geologist **Salama Bahr** and geologist **Amany Refaat** (Nuclear materials authority), **Prof. Adel Yehia, Prof. Ashraf R. Bagddady** and geologist **Yasmen Gamal** (Ain Shams University) for their assistance during the field work.

Thanks are extended to **Prof. Mohamed Galal El Feky** and **Dr. Nilly A. Kawady** (Nuclear materials authority), **Dr. Hassan Garramon** and my colleague **Mohamed mostafa** (Ain Shams University) and **Dr. Abdel Nasser Abu Zeid** (South Valley University).

Finally I would like to express my hearty love and deepest gratitude to my family for their sympathetic feelings and care during this thesis

Contents		
		Page No.
List of Figures		Vii
List of Tables		XiX
СНАРТ	'ER ONE	
	duction	
1.1 Preface		1
1.2 Location of the Study Area		
1.3 Climatic conditions		3
1.3.1 Temperature and Humidit	V	4
1.3.2 Wind and Rainfall	<i>J</i>	4
1.4 Previous works		
1.4.1 Mineralogy, Geochemistr	y and Radioactivity	5
1.4.2 Sedimentology and Strati		11
1.4.3 Hydrogeology and Enviro		12
1.4.4 Remote sensing studies		15
1.5 Objectives		15
СНАРТ	ER TWO	
General	Geology	
2.1 Stratigraphic Setting		17
2.1.1 Precambrian Rocks		20
2.1.2 Paleozoic rocks		20
2.1.2.1 Sarabit El Khadim Fo	ormation	21
2.1.2.2 Abu Hamata Formati	on	22
2.1.2.3 Adedia Formation		22
2.1.2.4 Um Bogma Formatio		22
2.1.2.5 El Hashash Formation	n	24
2.1.2.6 Magharet El Maiah F		24
2.1.2.7 Abu Zarab Formation	<u> </u>	24
2.1.3 Mesozoic Rocks		25
2.2 Structure		25
2.3 Hydrogeology		26
	ER THREE	
	and Methods	
3.1 Sample Collection		29
3.1.1 Sediment and rock Sampl	es	29
3.1.2 Water Samples		32

3.2 Grain Size Analysis	35
3.3 Mineralogical Analysis	36
3.3.1 Heavy minerals separation	36
3.3.2 X-Ray diffraction	36
3.4 Geochemical Analysis	37
3.4.1 Water Analysis	37
3.4.1.1 pH	37
3.4.1.2 Electrical Conductivity (EC)	37
3.4.1.3 Total Dissolved Solids (TDS)	37
3.4.1.4 Major Cations and Heavy Metals Analysis	38
3.4.1.5 Major Anions Analyses	38
3.4.2 Sediment Analysis	38
3.4.2.1 Preparation of Sediment Extract	38
3.4.2.2Total Toxic Metals Analysis	39
3.4.2.3 Scanning Electron Microscope and EDX	39
Techniques	
3.4.1.6 Radioactivity	40
Sodium Iodide (NaI) detector	40
Hyper-pure Germanium(HPGe) detector	40
Spectrophotometer	41
3.5 Statistical Treatment	42
CHAPTER FOUR	
Textural and Mineral Attributes	
4.1 Textural Attributes	43
4.1.1 Textural Nomenclature of Study Area Sediments	43
4.1.2 Grain Size Frequency Distributions	46
4.1.2.1 Histograms	46
4.1.2.2 Probability cumulative curves	47
4.1.2.3 Grain size parameters	52
Graphic Mean (Mz)	52
Sorting Coefficient (σ_I)	55
Inclusive Graphic Skewness (SK _I)	56
Inclusive Graphic Kurtosis (KG)	58
4.1.2.4 Scatter Diagrams	59
4.2 MINERALOGY	62
4.2.1 Heavy Mineral Analysis	62
4.2.2 Light Minerals	65
4.2.3 Opaque minerals	65
4.2.4 Non-opaque minerals	66
4.2.4.1 Ultrastable Group	66
Zircon	66
Tourmaline	68
Rutile	69

4.2.4.2 Metastable group	70
Epidote	70
Kyanite	71
Staurolite	71
Sillimanite	72
Monazite	72
Barite	73
4.2.4.3 Unstable Group	74
Pyroxenes	74
Amphiboles	74
Apatite	75
4.2.4.4 Uranyl and Rare earth bearing minerals	77
Goyazite	77
Xenotime(Y)	77
Autunite	77
4.2.5 Heavy minerals indices	80
4.2.6 Clay minerals 4.2.7 Source Rocks	82 84
	04
CHAPTER Five	
Geochemistry	
5.1 Geochemical Characteristics of Stream	86
Sediments	
5.1.1 Physicochemical parameters	86
5.1.1.1pH	88
5.1.1.2 EC	89
5.1.2 Chemical composition	91
5.1.2.1 Major Cations and Anions	91
Sodium (Na+)	91
Potassium (K+)	92
Calcium (Ca+2)	93
Magnesium (Mg+2)	94
Chloride (Cl-)	95
Bicarbonate (HCO3-)	96
Nitrate (NO3-)	97
5.1.2.2 Heavy Metals	99
Aluminum (Al)	101
Barium (Ba)	105
Chromium (Cr)	107
Cobalt (Co)	108
Copper (Cu)	109
Iron (Fe)	111
11011 (1 C)	111

	110
Lead (Pb)	113
Manganese (Mn)	115
Nickel (Ni)	117
Vanadium (V)	119
Zinc (Zn)	120
5.2 Groundwater Geochemistry	123
5.2.1Physicochemical parameters	124
5.2.1.1 pH	124
5.2.1.2 Electrical conductivity (EC)	124
5.2.1.3 Total Dissolved Solids (TDS)	125
5.2.1.4 Alkalinity	128
5.2.2 Chemical Composition	128
5.2.2.1 Major Cations	128
Sodium (Na+)	129
Potassium (K+)	130
Calcium Ca2+	131
Magnesium (Mg2+)	132
5.2.2.2 Major Anions	133
Fluorine (F-)	133
Chlorine (Cl-)	134
Nitrite (NO2-)	135
Nitrate (NO3-)	136
Sulfate (SO4-)	137
Bicarbonate (HCO3-)	138
5.2.2.3 Toxic Metals	139
Aluminum (Al)	140
Barium (Br)	141
Chromium (Cr)	142
Copper (Cu)	143
Iron (Fe)	143
Manganese (Mn)	144
Nickel (Ni)	145
Zinc (Zn)	146
5.2.2.4 Rock water Interaction	147
CHAPTER SIX	
Radioactivity	
6.1 Radioactivity of the Stream Sediments	160
6.1.1 Uranium	160
6.1.2 Thorium	163
6.1.3 Potassium	165

6.2 Distribution, environmental impact and isotopic	172
composition of uranium in groundwater	
Fractionation mechanisms in the 234U/238U	178
system	
Alpha recoil	178
Lattice damage	178
Valence-associated isotopic fractionation	179

	List of Figures	Page No.
Fig. 1.1	Satellite image shows the location of the main wadis in the study area	3
Fig. 2.1	Geologic map of the study area	18
Fig. 2.2	The lithostratigraphic section of the study area, Southwestern Sinai	19
Fig. 2.3	Drainage map of the study are	28
Fig. 3.1	location map of sediment sampling sites from the study area	31
Fig. 3.2	location map of water sampling sites from the study area	34
Fig. 4.1	Bivariant plots of organic matter contents vs. clay and sand fractions	44
Fig. 4.2	Plotting of the studied sediments on the ternary diagram proposed by Folk (1954)	46
Fig. 4.3	Histograms representing the grain size distribution in the studied sediments. (NA= Wadi Nasieb, SE= Wadi El Seih, BA= Wadi Baba, SA= Wadi El Sahu and TS= Talet Seleim.)	48
Fig. 4.4	Probability cumulative curves of Wadi Nasieb sediments	50
Fig. 4.5	Probability cumulative curves of Wadi El Seih sediments	50
Fig. 4.6	Probability cumulative curves of Wadi Baba sediments	51
Fig. 4.7	Probability cumulative curves of Wadi El Sahu sediments	51
Fig. 4.8	Probability cumulative curves of Talet Seleim sediments	52
Fig. 4.9	Boxplot of the graphic mean (Mz) for the studied sediments	53
Fig. 4.10	Boxplot of the sorting coefficients (σ_I) for the studied sediments	56
Fig. 4.11	Boxplot of the skewness (SK _I) for the studied sediments	58
Fig. 4.12	Boxplot of the kurtosis (KG) for the studied sediments	59
Fig. 4.13	Scatter plot of sorting coefficient vs. mean size on the diagram proposed by Moiola and Weiser (1968)	60
Fig. 4.14	Scatter plot of sorting coefficient vs. skewness on the diagram proposed by Moiola and Weiser (1968)	60
Fig. 4.15	Scatter plot of sorting coefficient vs. skewness on the diagram proposed by Martins (2003)	61
Fig. 4.16	Scatter plot of graphic mean vs. sorting coefficient on the diagram proposed by Martins (2003)	61
Fig. 4.17	Frequency distribution of the relative abundance of heavy	64

	minerals in the studied samples	
E'. 410	BSE image and EDX pattern of ilmenite on unidentified	65
Fig. 4.18	silicate mineral (Wadi Baba)	65
E'. 410	BSE images and EDX patterns of Massive and lamellar	
Fig. 4.19	ilmenite grain (Talet Seliem)	66
E:- 4.20	BSE image and EDX pattern of zircon grain (Talet Seliem	C 9
Fig. 4.20	area).	68
	BSE image and EDX pattern of Prismatic zircon grain with	
Fig. 4.21	bipyramidal terminations, the grain shows fractures related to	68
	mechanical weathering (Talet Seliem area)	
	Photomicrograph of heavy minerals (A = partially metamict	
	zircon grain (Wadi Nasieb) and B = fractured zircon grain	
	(Talet Seliem), C and D= prismatic tourmaline grain (Wadi	
	Baba and Wadi Nasieb), respectively, E= brownish rutile grain	
Fig. 4.22	(Wadi Nasieb), F-allanite (Wadi El Sahu), G- Aegerine (Wadi	76
	El Sahu), H- hypersthene with schiller structure (Wadi El	
	Sahu), J- prismatic hornblende grain (Wadi Nasieb), K-	
	arfvedsonite grain (Wadi Nasieb) and L- Euhedral apatite	
	grain (Wadi El Sahu)	
Etc. 4.22	BSE images and EDX patterns of Allanite grain with surface	71
Fig. 4.23	roughness due to weathering (Talet Seliem)	71
	BSE image and EDX pattern of (A= monazite inclusions	
Fig. 4.24	(Talet Seliem), B= barite grain with small prism faces (Wadi	73
	Nasieb)	
Fig. 4.25	BSE images and EDX patterns 1-Goyazite and 2-prismatic	70
Fig. 4.25	zircon grain (Wadi El Sahu).	78
	BSE image and EDX pattern of a-xenotime inclusions (Wadi	
Fig. 4.26	El Sahu), b- Prismatic grain of xenotime with rounded	79
	periphery (Talet Seliem)	
E: 4 27	BSE images and EDX patterns Encrustation of autunite on	00
Fig. 4.27	colloidal iron oxide mineral grain (Talet Seliem).	80
E!- 4.20	The distribution of ZTR index in the stream sediments from	01
Fig. 4.28	the different wadis	81
Fig. 4.29	X-ray diffractograms of the selected clay samples.	83
E!- 4 20	The predominance of amphiboles and pyroxene grains over	05
Fig. 4.30	zircon, tourmaline and rutile in the studied sediments	85
Fig. 5.1	Spatial distribution of pH in the studied stream sediments	89
Fig. 5.2	Spatial distribution of EC in the studied stream sediments	90
L		