

A Study of Dopamine D2 Receptor Taq1 A Alleles in Children with Attention-Deficit Hyperactivity Disorder

Thesis

Submitted for Fulfillment of Ph Degree in Childhood Studies (*Child Health and Nutrition*)

Department of Medical Studies for Children

By

Marwa Mohamed Moro

M.B.BCH.2004, M.SC Pediatric 2011 Faculty of medicine_Cairo University

Under Supervision of

Prof. Howida Hosny El Gebaly

Professor of Pediatrics

Dean of faculty Postgraduate - Childhood Studies

Ain Shams University

Prof. Eman Ahmed Zaky

Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Tarek Mostafa Kamal

Consultant of Human Genetics Faculty of Medicine - Ain Shams University

Ain Shams University

2018

First of all I thanked god for all his giving throughout my life, I thank my family for their support though all hard and difficult time

I would like to express my deepest gratitude to prof. Dr. Howida Hosney El Gebally Professor of Pediatrics, Vice dean Faculty of Postgraduate Childhood Studies, Faculty of Medicine, Ain Shams University, who gave me the honor of working under supervision and follow up of the progress of this work..

I wish to express my deepest thanks and gratitude to Dr. Eman Ahmed Zaky Professor of Pediatrics, Faculty of Medicine, Ain Shams University for guiding me all through this thesis and revising all my work.

I wish thanks Dr. **Tarek Mostafa Kamal** Consultant of Human Genetics, Faculty of Medicine - Ain Shams University for his great help and setting the guidelines which I followed and all his valuable notes and encouragement.

≥ Marwa Mohamed Moro

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vi
Abstract	viii
Introduction	1
Aim of the study	4
Review of literature	
Chapter (1): Attention Deficit Hyperactive Disorde	er "ADHD" 5
Chapter (2): Dopamine D2 receptor Gene	44
Chapter (3): Dopamine D2 Receptor Gene and	I ADHD 52
Subjects and Methods	56
Results	66
Discussion	90
Summary	102
Conclusion	106
Recommendations	107
References	108
Arabic Summary	

List of Tables

Table (1): Gender-specific presentation of attention-deficit/hyperactivity disorder:	Table No	. Title	Page No.
Table (3): Primary targets of dopamine in the mammalian brain:	Table (1):		
Table (4): Stanford—Binet Fifth Edition (SB5) classification	Table (2):		
Table (5): Statistical comparison between studied ADHD cases and controls regarding age distribution	Table (3):		
Table (6): Statistical comparison between studied ADHD cases and controls regarding categorical clinical variables (parameters)	Table (4): S	Stanford–Binet Fifth Edition (SB5) classif	ication59
and controls regarding categorical clinical variables (parameters)	Table (5):		
comparison between past medical histories in the two groups	Table (6):	and controls regarding categorical clini	cal variables
and controls regarding Delivery route	Table (7): 1	comparison between past medical histori	es in the two
comparison between studied cases& controls regarding achievement of bladder control	Table (8):		
comparison between behavioral problems in the two	Table (9):	comparison between studied cases	& controls
	Table (10):	comparison between behavioral problem	ns in the two

Table (11):	Descriptive statistics and results of Fisher's exact test for comparison between steeling and violence in the two groups	. 73
Table (12):	Statistics and results of Chi-square test $(\chi 2)$ test for comparison between cognitive functions in the two groups	. 74
Table (13):	Statistics and results of Chi-square and Fisher's exact test for comparison between mental status in the two groups.	. 75
Table (14):	Descriptive statistics for ADHA groups in Conner's parent Rating Scales-Revised (CRS-R)	.77
Table (15):	Descriptive statistics for ADHD scale	.78
Table (16):	Descriptive statistics for DSM-IV criteria in cases	. 79
Table (17):	Descriptive statistics for PSCL scores	. 80
Table (18):	Statistical comparison between studied ADHD cases and controls regarding phenotypes (Allele)	. 80
Table (19):	Statistical comparison between studied ADHD cases and controls regarding genotypes.	. 82
Table (21):	Frequency distribution of the studied polymer-phism and sex,	. 84
Table (22):	Frequency distribution of the studied polymorphism as regards Connor's rating scale (inattentive subtype).	. 84
Table (23):	Frequency distribution of the studied polymorphism as regards Connor's rating scale (hyperactive subtype.)	. 85
Table (24):	Frequency distribution of the studied polymorphism as regards Connor's rating scale (ADHD index.)	. 86

List of Tables

Table (25):	Frequency distribution of the studied polymorphism as regards Connor's parent rating scale (inattentive subtype).	86
Table (26):	Frequency distribution of the studied polymorphism as regards Connor's rating scale (hyperactive subtype.)	
Table (27):	Frequency distribution of the studied polymorphism as regards ADHD Index	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	General difference between D1 dopamine receptors structure	
Figure (2):	Dopamine receptor structure	
Figure (3):	Bar chart representing gender dis two groups	
Figure (4):	Bar chart representing family history distributions in the two grown	1 0
Figure (5):	Bar chart representing past medicagroups	•
Figure (6):	Bar chart representing delivery regroups.	
Figure (7):	A Bar chart presenting the percent of different speech disturbances of	•
Figure (8):	A pie chart presenting the percen of different behavioral sleep ADHD cases.	disturbances of
Figure (9):	Pie chart representing comorbid of two groups	
Figure (10):	Bar chart representing cognitive two groups	
Figure (11):	Bar chart representing Reading abretwo groups.	

List of Figures

Figure (12):	Bar chart representing CRS-R in ADHD group78
Figure (13):	Pie chart representing ADHD Index scores in ADHD group
Figure (14):	Bar graph showing diagrammatic representation of the different encountered phenotypes among cases compared to controls
Figure (15):	Bar graph showing diagrammatic representation of the different encountered genotypes among cases compared to controls
Figure (16):	Bar graph showing diagrammatic representation of the different encountered genotypes among cases classified according to their Conner's rating scale of inattention.
Figure (17):	Bar graph showing diagrammatic representation of the different encountered genotypes among cases classified according to their Conner's rating scale of hyperactivity
Figure (18):	Bar graph showing diagrammatic representation of the different encountered genotypes among cases classified according to their Conner's rating scale of ADHD Index

Tist of Abbreviations

Abbr.	Full Term	
AAP	American Academy of Pediatrics	
AD	Anxiety disorders	
ADHD	Attention deficit hyperactivity disorder	
APA	American Psychiatric Association,	
ASD	Autism spectrum disorder	
BD	Bipolar disorders	
BPD	Borderline personality disorder	
CAM	Complementary and alternative medicine	
CBT	Cognitive-behavioral therapy	
CD	Conduct disorder	
CPMDT	Creative potential measured by divergent thinking	
CRS-R	Conner's parent Rating Scales-Revised	
DAMP	Deficits in attention, motor/perception	
DRD2	Dopamine receptor D2	
DSM IV	Diagnostic and Statistical Manual of Mental	
	Disorders 4	
DSM-IV-TR	Diagnostic and Statistical Manual of Mental	
	Disorders, fourth edition text revised	
ED	Eating disorders	
EFA	essential fatty acid	
EI	Emotional intelligence	
FDA	Food and Drug Administration	
ICD	International Classification of Diseases	
ICDH	International Statistical Classification of	
	Diseases and Related Health	
IQ	Intelligence quotient	
LC-PUFA	Long-chain poly unsaturated fatty acid	

List of Abbreviations

MBD Minimal brain dysfunction

MD Major depression

NCCMH National Collaborating Centre for Mental Health

obsessive compulsive disorder (OCD),

OCD obsessive compulsive disorderODD Oppositional defiant disorderPSCL Pediatric Symptom Checklist

S-ADHD secondary-ADHD

SB5 Stanford-Binet Intelligence Scales 5

SDB Sleep disorder breathing

SHS Secondhand smoke
SUD Substance use disorder
TS Tourette syndrome

VNTR Variable number tandem repeat

Abstract

Background: Genetic susceptibility has a crucial role in the development of Attention-deficit hyperactivity disorder (ADHD). Several genes were found to be involved; one of the commonest genes is dopamine D2 (DRD2) (Taq1A) gene which was found to be associated with ADHD.

Objectives: Investigating polymorphisms in DRD2 receptor gene in a sample of Egyptian children with (ADHD), demonstrating phenotype-genotype correlation concerning the polymorphism in dopamine receptor gene compared to controls .

Methodology: A case control study was conducted enrolling 50 cases diagnosed with ADHD, and 50 healthy controls of comparable age and sex. All cases and controls were subjected to history taking, physical examination. Diagnosis of ADHD was confirmed using Diagnostic and Statistical Manual of Mental Disorders, fourth Edition TR. Enrolled ADHD cases were assessed for psychosocial dysfunction using pediatric symptoms checklist, while Conner's Parent Rating Scale and ADHD scale were using to detect the type, and severity of ADHD. Dopamine receptor D2 (DRD2) genotyping was done using PCR-RFLP analysis using Taq1enzyme. Results: A1allele was more significantly encountered in 42% of cases compared to 27% of controls, while A2 was more significantly encountered in controls (73%) compared to cases (58%) (p=0.037). The A1A1 genotype was encountered in 26% of cases compared to 20% of controls (p=0.635), while A1A2 was significantly more encountered in patients (32%) compared to controls (14%), A2A2 was more encountered in controls (66%) compared to cases (42.0%) (p=0.047& 0.027). A1A1 genotypes was more prevalent in severe inattention but with no statistical significance, A1A2 was significantly more prevalent among cases with mild inattention (x2=4.026, p=0.036). A2A2 was statistically significant in mild hyperactivity.

Conclusion: children with ADHD had a significant presence of the A1 allele. A1A2 was significantly presence in ADHD with mild inattention.

Keywords: Attention-deficit hyperactivity disorder (ADHD), D2 receptor gene, Taq1 A polymorphism, genotype, and phenotype.

Introduction

Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder of the neurodevelopmental type in which there are significant problems of attention, hyperactivity, or acting impulsively that are not appropriate for age (*Sroubek and Kelly, 2013*). It affects about 6–7% of children when diagnosed via the American Psychiatric Association diagnostic criteria, the Diagnostic and Statistical Manual of Mental Disorders (DSM- IV criteria) and 1–2% when diagnosed via the International Classification of Diseases (ICD criteria) (*Willcutt, 2012*). Rates are similar between countries and depend mostly on how it is diagnosed (*ICDH*, 2014).

ADHD is diagnosed approximately three times more in boys than in girls. About 30–50% of people diagnosed in childhood continue to have symptoms into adulthood and between 2–5% of adults have the condition (*National Collaborating Centre for Mental Health*, 2014).

Despite being the most commonly studied and diagnosed psychiatric disorder in children and adolescents, the cause in the majority of cases is unknown; however, it is believed to involve interactions between genetic and

environmental factors (*Taylor and Eric*, 2014). There are several hypotheses to explain occurrence of ADHD. One of them is the dopamine hypothesis which install that dysfunctions in dopamine systems are responsible for some of the symptoms (*Volkow et al.*, 2010). Twin studies indicate that the disorder is often inherited from one of the parents with genetics determining about 75% of cases (*Neale et al.*, 2010). Siblings of children with ADHD are three to four times more likely to develop the disorder than siblings of children without the disorder. Genetic factors are also believed to be involved in determining whether or not ADHD persists into adulthood (*Franke et al.*, 2012).

Typically a number of genes are involved, many of which directly affect dopamine neurotransmission (*Gizer et al., 2009*). In the dopaminergic pathway, one such gene is a dopamine receptor D2 (DRD2) gene which codes for a dopamine receptor (*Kebir et al., 2009*). The DRD2 gene encodes 2 molecularly distinct iso-forms of the receptors with distinct functions. Signaling through dopamine D2 receptors governs physiologic functions related to locomotion, hormone production, and drug abuse (*Zwaluw et al., 2011; Banerjee, 2014*).

Such DRD2 gene shows polymorphisms of 3 kinds namely: -141c ins/del; Taq1B; Taq1A. The-141c ins/del allele and Taq1A allele; have been implicated with higher risks of Autistic spectrum disorder (ASD). With regards to the Taq1A allele, ASD patients with the DRD2 A allele, are characterized by greater severity of their disorder across a range of problem drinking indices, when compared with patients without this allele (*Banerjee*, 2014). The Taq1A polymorphism has also been implicated in conduct disorder, behavioral phenotype of impulsivity, and problematic alcohol/drug use amongst adolescents (*Smythers et al.*, 2009).

AIM OF THE STUDY

The present study aimed to explore the possible existing polymorphisms in DRD2 receptor gene in a studied sample of Egyptian children with ADHD. In addition it aimed to demonstrate phenotype-genotype correlation, concerning the polymorphism in dopamine receptor gene in these children sample compared to control.