

ROTATIONAL DRIVES AND SERVICE LIFE ANALYSIS AND ENHANCEMENT OF MOULDS OF HORIZONTAL CENTRIFUGAL CASTING MACHINES

By

MOHAMMED AHMED ALI SHEHATA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Design and Production Engineering

FACULITY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

ROTATIONAL DRIVES AND SERVICE LIFE ANALYSIS AND ENHANCEMENT OF MOULDS OF HORIZONTAL CENTRIFUGAL CASTING MACHINES

By

MOHAMMED AHMED ALI SHEHATA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Design and Production Engineering

Under the supervision of

Prof. Dr. Saad Kassem	Prof. Dr. Ahmed Bahgat
Mechanical Design and Production	Power Electrical Machines
Department	Department
Faculty of Engineering, Car	iro University
Dr. Mohamed	d Elgamil

Assistant Professor Mechanical Design and Production Department.

Faculty of Engineering, Cairo University

FACULITY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2019

ROTATIONAL DRIVES AND SERVICE LIFE ANALYSIS AND ENHANCEMENT OF MOULDS OF HORIZONTAL CENTRIFUGAL CASTING MACHINES

By

MOHAMMED AHMED ALI SHEHATA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Design and Production Engineering

Approved by the

Examining Committee

Prof. Dr. Saad Kassem (Thesis Main Advisor)	
Faculty of Engineering at Cairo University	
Prof. Dr. Ahmed Bahgat (Advisor)	
Faculty of Engineering at Cairo University	
Prof. Dr. Layla Byoumi (Internal Examiner)	••••
Faculty of Engineering at Cairo University	
Prof. Dr. Mervet Badr (External Examiner)	
National Research Centre	

FACULITY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2019

Engineer's Name: Mohamed Ahmed Ali Shehata

Date of Birth: 28/7/1976 **Nationality:** Egyptian

E-mail: shehatamech@gmail.com

Phone: 01008890849

Address: Bortos – Oseem – Giza

Registration Date: 1/10/2010

Awarding Date:/ 2019

Degree: Doctor of Philosophy

Department: Mechanical Design and Production Engineering

Supervisors:

Prof. Dr. Saad Kassem
Prof. Dr. Ahmed Bahgat

Dr. Mohamed A. Elgamil

Examiners:

Prof. Dr. Saad Kassem (Thesis main advisor)

Prof. Dr. Ahmed Bahgat (Advisor)

Prof. Dr. Layla Byoumi (Internal examiner)

Prof.Dr. Mervet Badr (External examiner)

(National Research Centre)

Title of Thesis:

ROTATIONAL DRIVES AND SERVICE LIFE ANALYSIS AND ENHANCEMENT OF MOULDS OF HORIZONTAL CENTRIFUGAL CASTING MACHINES

Key Words:

Mould, Centrifugal Casting, Service Life, Misalignment, Thermo-mechanical

Summary:

In this research work a centrifugal casting machine driven by a separately excited DC motor and proposed AC motor is investigated. The study has been carried out using two methods of simulation; mathematical modeling and laboratory experiments. The mathematical model has been validated by comparing the simulation results with actual measurements taken with the DC drive. On the other hand, In order to regain the mould expected service life, for improving the operation economic and technical sides, a study of the factors that reduce this life was carried out. The strain measurements were used as indirect indicator for adjusting the mould alignment. The study conclusions were used to develop recommendations and prepare action plans that would improve the mould service life.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that i have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

AKNOWLEDGEMENT

A lot of thanks to **GOD** for giving me the power and perseverance to accomplish this work.

I would like to acknowledge with thanks Prof. Dr. Saad Kassem for his contributions and guidance, for his valuable opinions and suggestions throughout the work. His valuable suggestions regarding the thesis layout and his review of the manuscript are much appreciated. I am greatly indebted for his continued, encouragement and patience.

I wish as well to thank Prof. Dr. Ahmed Bahgat for his interest in the work, encouragement, and continuous support. His valuable comments regarding the theoretical and experimental work dedicated to the electric drive and control systems are much appreciated.

I would like also to express my deep gratitude to Dr. Mohamed El Gamil for suggesting the subject of this thesis, his constant guidance and valuable support. He did every possible effort to help and advise me during the course of the research as well as during drafting the thesis. His continuous support and valuable comments are much appreciated.

Also I would like to thank Dr. Bassam Abd EL Latief, department of Mechanical Design and Production for his assistance during the development of the mathematical model and field measurements of mechanical vibrations.

I very much value the support of the management of El-Nasr Castings Company to encourage this research work dedicated to solve two actual-plant problems. Gratitude is also for Eng. M. Naguib and Eng. A. Madian of El-Nasr Castings Company for their co-operation and help.

Finally I deeply thank my family and my wife for the encouragement and patience they showed throughout my Ph.D. study especially throughout the last year during which the thesis was drafted.

TABLE OF CONTENTS

DISCLAIMER	
ACKNOWLEDGEMENTS	II
TABLE OF CONTENTS.	III
LIST OF TABLES	VI
LIST OF FIGURES	.VII
LIST OF SYMBOLES	
ABSTRACT	
CHAPTER 1: BACKGROUND	
1.1 Introduction	
1.2 Centrifugal Casting Principles and Advantages	
1.3 Components of a Casting Line	
1.3.1 Pouring Equipment	
1.3.2. Machine Housing and Components	
1.3.3 Core Setting Equipment	
1.3.4 Cooling Water System	
1.3.5 Pipe Drawing Carriage	
1.4 Description of the Investigated Centrifugal Casting Machine	
CHAPTER 2: LITERATURE SURVEY AND PROBLEM STATEMENT	
2.1 Literature Survey	
2.1.1 Electrical Drives Survey	
2.1.1 Electrical Drives Survey	
2.1.2 Mechanical System Survey	
2.2 Problem Statement and Scope of Work	
ROTATION USING DC MOTORS	
3.1 Mathematical Modeling of the System	
3.1.1.1 Four-Quadrant Operation	
3.1.1.2 Motoring Mode	
3.1.1.3 Regenerating Mode	
3.1.1.4 Speed/Torque Relationships of DC Motor	
3.1.2 The System Mathematical Model	
3.1.2.1 System Parts Moments of Inertia Determination	
3.1.2.2 Practical Determination of the System DampingCoefficien	
3.2 System Numerical Simulation	
3.3 System Actual Performance	
3.4 Comparison between Actual and Theoretical Results	
CHAPTER 4: MATHEMATICAL MODEL AND SIMULATION OF MOU	
ROTATION USING AC MOTORS	
4.1 Induction Motors Representation and Modeling	
4.1.1 Voltage Equations	
4.1.2 Dynamic Equations of the Two Phase Equivalent Model	
4.1.3 Currents Equations	
4.1.4 State Space Model of the Induction Motor	
4.1.5 The AC motor and drive	
4.2 System Mathematical Model	
4.3 System Simulation	
4.4 Performance Comparison between Systems with DC and AC Motor	ors

4.5 Costs Considerations	52
4.5.1 Motor Life time Determination	52
4.5.2 Capital Cost	53
4.5.3 Life Cycle Cost	
4.5.4 Running Cost Savings	
CHAPTER 5: EXPERIMENTAL COMPARISON	BETWEEN DC AND AC
DRIVES OF MOULDS	56
5.1 Test Bench Description	56
5.1.1 Electrodynamometer	57
5.1.2 DC compound wound motor	
5.1.3 Three phase squirrel cage induction i	notor58
5.1.4 Hand tachometer (Photo-contact Tac	hometer)58
5.1.5 Variable speed drives	59
5.2 Circuit diagrams for the DC compound v	wound motor59
5.3 Experimental work	
5.3.1 Test rig set up for DC motor	60
5.3.2 Experimental results for the DC motor	
5.4 Circuit diagrams for the squirrel cage inc	
5.4.1 Test Rig Set up for AC motor	
5.4.2 Experimental results for the AC motor	
CHAPTER 6: THEORETICAL STUDY FOR THE	
MOULDS SERVICE LIFE	65
6.1 Mould Material	65
6.2 Mould's Stresses and Strains	69
6.2.1 Loading Stress	70
6.2.1.1 Stresses and Strains due to Mo	ould Weight70
6.2.1.2 Deflection due to bending m	noment by use of singularity
functions	73
6.2.1.3 Mould Model Deflection Equat	ions73
6.2.2 Stresses due to Mould Weight and M	
6.3 Failure Theories	79
6.3.1 Static Loading Analysis	79
6.3.2 Mould Dynamic Loading Analysis	80
6.4 Stress Analysis of Mould Subject to the	Thermo Mechanical Loads.86
6.4.1 Analysis for Mechanical Loading due	e to Rotation87
6.4.2 Yield Rotational Speed	88
6.5 Stresses in the Mould due to Rotation of	Cast Metal Pipe89
6.6 Combined Rotational, Thermal and C	Contact Pressure Stresses in
Mould	92
6.7 Thermal-Shock and Thermal-Fatigue	94
6.7.1 Thermal Strains and Associated Stres	ses94
6.8 Fatigue life assessment	
CHAPTER 7: EXPERIMENTAL STUDY AN	
PARAMETERS AFFECTING MOU	U LDS SERVICE LIFE 105
7.1 Investigation of a Scraped Mould Sample	
7.1.1 Investigations of Mould with Short Se	ervice Life105
7.1.2 Investigations of Mould with Nomina	
7.2 Investigations of Mould Misalignment	111
7.2.1 Field Strain Measurements	111
7.2.1.1 Adjustment Steps and Calibration	on111

7.2.2 Field Vibration Measurements	11
7.3 Moulds and Pipes Temperatures1	13
7.3.1 Effect of Water Flow Rate and Pouring Temperature	13
7.3.2 Effect of Coating, Mould Rotational Speed and Mould Thicknes	
7.3.3 Effect of Peening on Mould Surface Strengthening	20
CHAPTER 8: IMPLEMENTATION OF RECOMMENDATIONS FO)R
IMPROVING MOULD SERVICE LIFE AND RESULTS12	21
8.1 Implementation Procedures12	21
8.1.1 Mould Preparation12	21
8.1.2 Centrifugal Casting Machine Preparation	
8.1.3 Mould Maintenance1	25
8.2 Implementation Results	26
8.3 Cost Savings1	27
8.3.1 Moulds Costs	27
CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS FOR FUTUR	RE
WORK 1	29
REFERENCES	30
APPENDIX 1	33

LIST OF TABLES

Table 1.1: Centrifugal casting machine list of parts	7
Table 3.1: V- belt Specification	17
Table 3.2: Technical data of DC motor 1HQ5-312-5GE40-6JU3-Z	29
Table 3.3: System parameters used for numerical simulation	29
Table 4.1: System parameters of AC motor	
Table 4.2: DC and AC motor estimated life time	53
Table 4.3: DC and AC drive costs	53
Table 4.4: DC and AC drive life cycle costs	54
Table 5.1: Simulation results for the DC motor	61
Table 5.2: Simulation results for the AC motor	64
Table 6.1: Pipe mould chemical composition	65
Table 6.2: Mould material properties	66
Table 7.1: Chemical analysis of failed mould	106
Table 7.2: Tensile test, impact test and hardness measurements of failed mould	109
Table 7.3: Chemical composition of mould scraped after its normal service lifeting	me.110
Table 7.4: A comparison of peening parameters for mould size DN1000	120
Table 8.1: Average actual productions of pipes size DN1000 per year	121
Table 8.2: Peening working speeds for mould size DN1000	122
Table 8.3: Average number of pipes per mould during 2017 and 2018	126
Table 8.4: Actual productions of pipes using the moulds size DN1000	127
Table 8.5: Mould costs for size DN1000	128

LIST OF FIGURES

Figure 1.1: 3-D Isometric of a centrifugal casting system	3
Figure 1.2: Main construction of a centrifugal casting machine	
Figure 1.3: Mould of a centrifugal casting machines DN1000	
Figure 1.4: A fragmentary sectional view, in elevation, diagrammatically of centrifu	
casting machine	6
Figure 1.5: Sectional view taken along line 2-2 of Fig.1.4	7
Figure 3.1: The structure of centrifugal casting machine with belt drive	
Figure 3.2: Schematic representation of the electromechanical drive system	
Figure 3.3: V- belt cross section	.17
Figure 3.4: Belt mass-spring-damper system	18
Figure 3.5: Experimentally recorded damped acceleration of the belt free vibration	19
Figure 3.6: Schematic diagram of controlled-speed drive	20
Figure 3.7: Four quadrants of the torque–speed plane	21
Figure 3.8: Schematic diagram of motoring mode	
Figure 3.9: Schematic diagram of regenerating mode	
Figure 3.10: Torque and power relations below and beyond base speed	22
Figure 3.11: Separately excited DC motor circuit	
Figure 3.12: (a) Dimensions of driving pulley, (b) driven pulley	
Figure 3.13: The mould dimensions for DN1000	26
Figure 3.14: Dimensions of ductile cast iron pipes for DN1000	
Figure 3.15: Casting of ductile cast iron pipe for DN1000	
Figure 3.16: Practical data of the angular speed as a function of time	28
Figure 3.17: Input motor armature voltage as a function of time	
Figure 3.18: Motor rotational speed as a function of time	30
Figure 3.19: Mould rotational speed as a function of time	
Figure 3.20: Motor armature current as a function of time	
Figure 3.21: Electromagnetic torque as a function of time	
Figure 3.22: Motor input power as a function of time	
Figure 3.23: Motor output power as a function of time	32
Figure 3.24: Actual recorded data for (a) voltage (b) current (c) rotation speed	33
Figure 3.25: Actual armature voltages as function of time for pipe DN1000	.34
Figure 3.26: Actual motor revolution speed as function of time	
Figure 3.27: Actual armature currents as function of time for pipe DN1000	34
Figure 3.28: Actual input power as a function of time for pipe DN1000	35
Figure 3.29: Actual and theoretical motor speeds as a function of time for DN1000	35
Figure 3.30: Actual and theoretical motor currents as a function of time for DN1000	36
Figure 3.31: Actual and theoretical input power as a function of time for DN1000	36
Figure 4.1: Three phase, Wye connected AC induction motor	38
Figure 4.2: α- β reference frame equivalent of a 3 phase induction motor	39
Figure 4.3: General arrangement of variable-frequency induction motor drive	42
Figure 4.4: General configuration of inverter	
Figure 4.5: Voltage and frequency relations below and beyond base speed	
Figure 4.6: Supply frequency as a function of time	
Figure 4.7: Stator voltages in stationary reference frame ($V_{\alpha s}$ and $V_{\beta s}$)	.46
Figure 4.8: Stator phase voltages V _a , V _b and V _c respectively	46
Figure 4.9: Stator currents in two phase (a) $i_{\alpha s}$ and (b) $i_{\beta s}$ as a function of time	.46
Figure 4.10: Stator currents in three phase (a) i_a , (b) i_b and (c) i_c as a function of time	.47
Figure 4.11: Motor rotational speed as a function of time	48

Figure 4.12: Mould rotational speed as a function of time	
Figure 4.13: Electromagnetic torque as a function of time	.49
Figure 4.14: Stator real power as a function of time	49
Figure 4.15: Motor input power as a function of time	.49
Figure 4.16: Motor output power as a function of time	
Figure 4.17: Comparison between motor speed as a function of time for DC and	AC
motor	
Figure 4.18: Comparison between mould speed as a function of time for DC and	
motor	
Figure 4.19: Comparison between input power as a function of time for DC and	
motor	
Figure 4.20: Average expected life versus winding temperature	
Figure 4.21: Motor current versus winding temperature	
Figure 5.1: The lab-volt electromechanical system (EMS)	
Figure 5.2: Electrodynamometer	
Figure 5.3: (a) DC compound motor (b) Equivalent circuit of a dc compound wound	
Figure 5.4: Squirrel cage induction motor	
Figure 5.5: Hand tachometer	
Figure 5.6: Variable speed drives, Altivar 32	
Figure 5.7: Circuit diagram for DC compound wound motor	
Figure 5.8: Test rig components for DC compound wound motor	
Figure 5.9: Circuit diagram for the three phase squirrel cage induction motor	62
Figure 5.10: Test rig components for the three phase squirrel cage induction	
motor	
Figure 6.1: Dimensions of mould	
Figure 6.2: Mould continuous time-temperature-transformation diagrams (a) 21CrM	
(b) 34CrMo4	
Figure 6.3: Hardening and tempering diagram (a) 21CrMo10 (b) 34CrMo	
Figure 6.4: Schematic drawing of the mould supporting	
Figure 6.5: Force body diagram of mould model	
Figure 6.6: Free body diagram of the mould model	
Figure 6.8: Variations of the shear force along the mould due to its weight	
Figure 6.9: Variations of the axial stress along the mould due to its weight	
Figure 6.10: Variations of the axial stress along the mould due to its weight	
Figure 6.11: Schematic diagram for mould misalignment	
Figure 6.12: Variations of the roller support reaction with mould misalignment	
Figure 6.12: Variations of the roller support reaction with module misangiment Figure 6.13: Variations of (a) shear forces, (b) bending moments, (c) axial stresses,	
axial strains along the mould due to its weight and misalignments	
Figure 6.14: Variations of the equivalent stresses with mould misalignments	
Figure 6.15: Surface finish factors for steel.	
Figure 6.16: Schematic diagram for fatigue stress.	
Figure 6.17: Fatigue Strength versus (a) No. of cycles (b) No. of pipes at mo	
strength σ_{ut} = 400 mould speed ω = 140 rpm and casting temperature	
$T=1310^{0}C$	
Figure 6.18: Fluctuating stresses	
Figure 6.19: Variations of the mould misalignments versus (a) No. of cycles (b) No	
pipes at mould strength σ_{ut} = 400, mould speed ω = 140 rpm and cast	
temperature T=1310°C	

Figure 6.20:	Variations of the mould misalignments versus No. of pipes at mould strength σ_{ut} = 400 MPa and casting temperature T=1310 ⁰ C85
Figures 6.21	: Variations of the mould misalignments versus No. of pipes at mould
	strength σ_{ut} = 400 MPa, casting temperature T=1310°C and mould speed
F: < 00	$\omega = 140 \text{ rpm}85$
Figures 6.22	: Variations of the mould misalignments versus No. of pipes at mould speed = 140 rpm and and casting temperature T= 1310° C86
Figure 6.23:	Mould thermo-mechanical load distributions
•	Variations of the radial along the mould thickness subjected to inertia
118010 0.21.	force due to rotating at 140 rpm87
Figure 6.25:	Variations of the radial, hoop and axial stresses along the mould thickness
	subjected to inertia force due to rotating at 140 rpm88
	Variations of maximum shear stress versus mould speeds89
Figure 6.27:	Variations of the radial stress of mould subjected to inertia force due to
F' 620	rotating of cast pipe at 140 rpm90
	Variations of the radial along the mould wall thickness91
Figure 6.29:	Variations of the radial, hoop and axial stress along the mould thickness
	subjected to inertia force due to rotating of cast pipe, $\omega = 140$ rpm and internal pressure Pc
Figure 6.30:	Variations of the radial stress along the mould wall thickness93
_	Variations of the radial stress, hoop stress and axial stress along the mould
118010 01011	thickness subjected to inertia force due to rotating of cast pipe, $\omega = 140$
	rpm rad/s and temperature gradient (650°C-100°C)93
Figure 6.32:	Variations of equivalent von misses stress versus mould thickness94
•	Temperature variation at different points of the centrifugal casting mould
C	wall as a function of time from the start of casting at casting temperature 1350°C96
Figure 6 34.	Stresses variation at different points of the centrifugal casting mould wall
_	as a function of time from the start of casting
	Graphic illustration of (a) temperature (b) thermal stress (c) thermal strain
	profile in a pipe mould wall produced during pipe casting cycles98
Figure 6.36:	The strain range versus (a) No. of cycles (b) No. of pipes100
Figure 6.37:	Casting temperatures versus number of pipes101
Figure 6.38:	Variations of the strain range versus number of pipes at ultimate tensile
	strength out= 400 MPa, ductility D=0.17, Young's modulus E=170 GPa,
	casting temperature T=13100C, pipe production rate 16 pipes/hr and
	casting time R=3.75 min. per pipe
Figures 6.39	2: Variations of the strain range versus No. of pipes at ultimate tensile
	strength out= 400 MPa, ductility D=0.17, Young's modulus E=170 GPa,
	mould speed = 140 rpm, pipe production rate 16 pipes/hr and casting time
-	R=3.75 min. per pipe
Figures 6.40	: Variations of the strain range versus No. of pipes at ductility D=0.17,
	Young's modulus E=170 GPa, mould speed = 140 rpm, pipe production
	rate 16 pipes/hr, casting temperature T=13100C, and casting time R=3.75
E'	min. per pipe
Figures 6.41	: Variations of the strain range versus No. of pipes at ultimate tensile
	strength out= 400 MPa, ductility D=0.17, Young's modulus E=170 GPa,
	mould speed = 140 rpm, casting temperature T=13100C, and casting time
	R=3.75 min. per pipe

Figures 6.42: Variations of the strain range versus No. of pipes at ultimate tensile
strength out= 400 MPa, pipe production rate 16 pipes/hr, Young's
modulus E=170 GPa, mould speed = 140 rpm, casting temperature
T=13100C, and casting time R=3.75 min. per pipe103
Figures 6.43: Variations of the strain range versus No. of pipes at ultimate tensile
strength out= 400 MPa, ductility D=0.17, Young's modulus E=170 GPa,
mould speed = 140 rpm, pipe production rate 16 pipes/hr and casting
temperature
T=13100C104
Figure 7.1: (a) Network cracks of the mould inner surface (b) Mould specimen106
Figure 7.2: Crack tip Image from Scanning Electron Microscope Analysis107
Figure 7.3: Crack tip microstructure (polished and etched crack tip)108
Figure 7.4: Internal microstructure of mould metal
Figure 7.5: Mould mechanical properties as a function in temperature109
Figure 7.6: (a) Mould fixation (b) Roller support
Figure 7.7: Strain gauge fixation at the inner surface of the mould
Figure 7.8: Temperatures of the outlet cooling water flow rates and mould inner surface
temperature114
Figure 7.9: Effect of water flow rate on the solidification time at different pouring
temperatures and casting period 27 sec
Figure 7.10: Effect of pouring temperature on the solidification time at different casting
periods and water flow rate 130 m ³ /hr115
Figure 7.11: Schematic diagram of experimental setup for mould specimen116
Figure 7.12: Highest temperature on the inside of the mould as a function of the casting
temperature117
Figure 7.13: Effect of surface temperature of mould on structure and notch impact
toughness117
Figure 7.14: Effect of the coating powder on the solidification time
Figure 7.15: Effect of the mould rotational speed on the solidification time118
Figure 7.16: Effect of the coating powder on the peak temperature of mould inner
surface119
Figure 7.17: Effect of the mould thickness on the solidification time119
Figure 8.1: Ultrasonic scanning of mould outer surface
Figure 8.2: Ultrasonic test system
Figure 8.3: Ultrasonic examination scanning for mould without internal defect124
Figure 8.4: Ultrasonic examination scanning for the mould with internal defect124
Figure 8.5: The mould actual productions of pipes per mould