

COAL FLOTATION IN MIXTURES OF INORGANIC SALTS

By

Rawya Gamal Mohamed Saad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
MINING ENGINEERING

COAL FLOTATION IN MIXTURES OF INORGANIC SALTS

By Rawya Gamal Mohamed Saad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
MINING ENGINEERING

Under the Supervision of

Prof. Dr. Ayman Abd El-Hamid
El-Midany

Professor of Mining Engineering
Mining, Petroleum and Metallurgy Department
Faculty of Engineering, Cairo University

Prof. Dr. Salah El-Din M. El-Mofty
Professor of Mining Engineering
Mining, Petroleum and Metallurgy Department
Faculty of Engineering, Cairo University

Dr. Nader Ahmed Ahmed Edress

Lecturer of Organic sedimentary rocks, Geology Department, Faculty of Science, Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

COAL FLOTATION IN MIXTURES OF INORGANIC SALTS

By Rawya Gamal Mohamed Saad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
MINING ENGINEERING

Approved by the	
Examining Committee	
Prof. Dr. Ayman A. El-Midany,	Thesis Main Advisor
Prof. Dr. Salah E. El-Mofty,	Advisor
Dr. Nader A. Edress,	Advisor
- Lecturer of Geology in Helwan University	
Prof. Dr. Ahmed A. Ahmed,	Internal Examiner
Prof. Dr. Sozan S. Ibrahim,	External Examine
- Professor of Mineral Processing, Central Me (CMRDI)	tallurgical Research R&D Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Rawya Gamal Mohamed Saad

Date of Birth: 6/8/1991 **Nationality:** Egyptian

E-mail: Rawyagamal@yahoo.com

Phone: 01114334216

Address: Helwan/Cairo/ Egypt

Registration Date: 1/10/2013 **Awarding Date:**/2018 **Degree:** Master of Science

Department: Engineering, Mining, Petroleum, and Metallurgy

Prof. Dr. Ayman Abdel-Hamid El-Midany Prof. Dr. Salah Eldin Mohamed Elmofty Dr. Nader Ahmed Ahmed Edress

- Lecturer of Geology in Helwan University

Examiners:

Prof. Dr. Sozan S. Ebraheem (External Examiner)

- Professor of Mineral Processing, Central

Metallurgical Research R&D Institute (CMRDI).

Prof. Dr. Ahmed A. Ahmed (Internal Examiner)

Prof. Dr. Ayman A. El-Midany (Thesis Main Advisor)

Prof. Dr. Salah E. El-Mofty (Advisor)

Dr. Nader A. Edress (Advisor)

- Lecturer of Geology in Helwan University

Title of Thesis:

COAL FLOTATION IN MIXTURES OF INORGANIC SALTS

Key Words:

Coal; flotation; salts solutions; hydrophobic; statistical design.

Summary:

Coal is not only an indispensable source of energy but also it has various applications. However, its impurities limit its usage. Although the flotation is the most common beneficiation technique, it consumes a considerable amount of water. Therefore, different types of water were tested in coal flotation. In particular, saline water was found to enhance the flotation of naturally hydrophobic coal particles. In this research, two coal samples differ in their ash content were subjected to flotation using some inorganic salts. Statistical design was used to study the binary, tertiary salt mixtures and to optimize the flotation process. It was observed that Mg ions have positive effect

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Rawya Gamal Mohamed	Date:/
Signatur	re:	

Acknowledgment

I would like to express my special appreciation and my sincere gratitude to my main supervisor Prof. Dr. Ayman A. El-Midany, Prof. Dr. Salah E.El-Mofty professors of Mining Engineering (Mineral Processing), Mining, Petroleum, and Metallurgical Department, Faculty of Engineering, Cairo University, for supporting me throughout my thesis with their patience and enthusiasm. They were always positive, extremely helpful. They also gave generously of their time and vast knowledge.

I cannot forget my deep regards to Dr. Nader Edress, Lecturer of Organic Sedimentary Rocks, Geology Department, Faculty of Science, Helwan University, for encouragement and guidance. He also provided me with all coal samples needed to complete this study as well as helping in their characterization.

I would like to thank all the staff of Mining Engineering Department, Faculty of Engineering- Cairo University for all their assistance and encouragement.

Finally, I dedicate this work to my family especially my mother, my father and my husband for everything they have done for me.

Table of Contents

DISCLA	AIMER	I
ACKNO	WLEDGMENTS	II
TABLE	OF CONTENTS	III
LIST OF	F TABLES	VI
LIST OF	F FIGURES	VII
ABSTRA	ACT	IX
CHAPT	ER 1: INTRODUCTION	1
1.1.	BACKGROUND	1
1.2.	TYPES OF COAL	4
1.3.	COAL USES	
1.3.1		
1.3.2	·	
1.3.3	•	
1.3.4		
1.3.5	-	
1.4.	PHYSICAL PROPERTIES OF COAL	
1.4.1		
1.4.2	•	
1.4.3	•	
1.4.4	•	
1.4.5	Electrical Conductivity	6
1.5.	COAL MINING	6
1.5.1		
1.5.2		
1.6.	EMISSIONS FROM BURNING COAL	
1.7.	REDUCING ENVIRONMENTAL EFFECTS OF THE COAL USE	6
1.8.	COAL PREPARATION	
	ER 2 : LITERATURE REVIEW	
2.1.	Introduction	
2.2.	BASIC CLEANING PROCESS	
2.2.	WASHABILITY TESTS	
2.4.	CLEAN COAL TECHNOLOGIES	
2.4.1	- ··· · · · · · · · · · · · · · · · · ·	
	J.1.1. Dense medium process	
	1.1.3. Shaking table	
2.4.2	<u> </u>	
2.4.3	Electrostatic separation	18
2.4.4	Froth flotation	19

2.4.4	.1. Direct flotation	21
2	4.4.1.1. With collectors	
2	4.4.1.2. Without collectors	22
2.5.	THESIS OBJECTIVES	26
CHAPTE	R 3 : EXPERIMENTAL WORK	27
3.1.	MATERIALS	27
3.1.1.	Location	27
3.1.2.	Coal preparation	
3.1.2.		
3.1.2		
3.1.2	•	
3.1.2	.4. Screening	30
3.1.3.	Characteristics of coal samples	30
3.1.2	.1. Proximate analysis	30
3.1.2	.2. Petrography	31
3.2.	METHODS	31
3.2.1.	Size analysis	31
3.2.2.	Electro-kinetic measurements	
3.2.3.	Froth flotation	
3.2.3. 3.1.2		
3.3.	STATISTICAL DESIGN	
3.3.1.	Effect of salt	
3.3.2.	Optimization of flotation factors	35
3.4.	EFFECT OF FROTHER	36
CIIA DEE	D 4 - DECLUTE AND DISCUSSION	27
CHAPIE	R 4 : RESULTS AND DISCUSSION	
4.1.	CHARACTERISTICS OF MATERIALS	37
4.1.1.	Canadian sample	37
4.1.1	•	
4.1.1	.2. Ultimate analysis	37
4.1.1	.3. Gross calorific value	37
4.1.1	.4. Petrography	40
4.1.2.	Egyptian sample	41
4.1.2	.1. Proximate analysis	41
4.1.2	- · · · · · · · · · · · · · · · · · · ·	
4.1.2		
4.1.2		
4.1.2		
4.2.	METHODS	
4.2.1.	Size analysis	
4.2.2.	Electro-kinetic measurements	47
4.2.2	r	
4.2.2	F	
4.2.3.	Froth flotation	48
4.2.3	.1. For Canadian sample	48
	2.3.1.1. Individual salt	
	2.3.1.2. Effect of common salts on flotation (Statistical design)	
	2.3.1.3. Salts binary mixtures	
	2.3.1.4. Salts tertiary mixtures	
4.2.3	2.3.1.5. Optimization of flotation factors	

4.2.3.2.	1. Individual salt	81
4.2.3.2.2	2. Effect of common salts on flotation (Statistical design)	82
4.2.3.2.	3. Salts binary mixtures	83
4.2.3.2.4	4. Salts tertiary mixtures	88
4.2.3.2.3	5. Effect of frother	91
SUMMARY A	AND CONCLUSIONS	94
RECOMMEN	DATIONS AND FUTURE WORK	95
REFERENCE	S	96

List of Tables

Table 2.1: Chemical composition of the saline water (mg/l)	24
Table 2.2: The chemical analysis of bore water	26
Table 3.1: The levels of factors in first design (NaCl, MgCl ₂ and CaCl ₂)	34
Table 3.2: Design matrix of factors (NaCl, MgCl ₂ and CaCl ₂)	34
Table 3.3: The levels of factors in second design	35
Table 3.4: Design matrix of factors	35
Table 4.1: The results of the proximate and ultimate analysis of Candian coal	38
Table 4.2: The results of the proximate and ultimate analysis of Egyptian coal	42
Table 4.3: The results of the first statistical design (Canadian sample)	49
Table 4.4: ANOVA table of factorial models [Partial sum of squares]	50
Table 4.5: The results of the second statistical design (Canadian sample)	59
Table 4.6: ANOVA table of factorial models [Partial sum of squares]	60
Table 4.7: The results of the first statistical design (Egyptian sample)	82
Table 4.8: ANOVA table of factorial models [Partial sum of squares]	83

List of Figures

Figure 1.1: Transformation of coal	1
Figure 1.2: Simplified coal structure indicating typical chemical groups	2
Figure 1.3: Importance and impact of coal in one day	2
Figure 1.4: Distribution of proved reserves in 2016	3
Figure 1.5: World coal consumption from 1990 to 2030	
Figure 1.6: Types of coals	4
Figure 2.1: Coal cleaning processes	
Figure 2.2: Float and sink Test	
Figure 2.3: Jig washing action principle	
Figure 2.4: Shaking table principle	
Figure 2.5: Common routes used in coal flotation	
Figure 2.6: Flotation of intruded conventional coals without collectors	
Figure 2.7: Coal flotation as a function of salt concentration	
Figure 2.8: X-ray diffraction patterns of raw coal	
Figure 3.1: Location map of (a) Canadian sample (b) Egyptian sample	
Figure 3.2: Coning and quartering (a,c) Egyptian and, (b,d) Canadian samples	
Figure 3.3: (a) laboratory Jaw crusher (b) top view	
Figure 3.4: Disc mill	
Figure 3.5: Sieve machine	
Figure 3.6: Zeta meter 3.0	
Figure 3.7: Schematic diagram of a froth flotation cell	
Figure 3.8: Flotation cell	
Figure 4.1: Rank of the Canadian coal seams	
Figure 4.2: Photomicrographs of Telkwa coal sample	
Figure 4.3: Rank of the Egyptian coal seams	
Figure 4.4: XRD analysis of Maghara coal	
Figure 4.5: Ternary diagram of maceral-group (Maghara coal)	
Figure 4.6: Photomicrographs of Maghara coal sample	
Figure 4.7: The cumulative weight passed and retained a) Telkwa b) Egyptian	
Figure 4.8: Zeta potential-pH profile of Canadian and Egyptian samples	
Figure 4.9: Zeta potential-pH profile of Canadian coal with and without salts	
Figure 4.10: Effect of individual salts on the ash content in the float (Candian coal)	
Figure 4.11: Effect of binary mixtures on ash % in the float of Canadian sample	
Figure 4.12: Interaction between the salts in the binary mixtures of Canadian sample	
Figure 4.13: Effect of binary mixtures on recovery % in float of Canadian sample	
Figure 4.14: Effect of tertiary mixtures of on ash % Canadian sample	
Figure 4.15: Effect of tertiary mixtures of on recovery % Canadian sample	
Figure 4.16: Effect of conditioning time on ash % in float fraction	
Figure 4.17: Effect of pulp density on ash % in float fraction	
Figure 4.18: Effect of particle size on ash % in float fraction	
Figure 4.19: Cubic diagram of recovery % in float fraction without salts	
Figure 4.20: Effect of conditioning time on ash % in float fraction at 2 Kg/t MgCl ₂	
Figure 4.21: Effect of pulp density on ash % in float fraction at 2 Kg/t MgCl ₂	
Figure 4.22: Effect of particle size on ash % in float fraction at 2 Kg/t MgCl ₂	
Figure 4.23: Cubic diagram of recovery % in float fraction at 2 Kg/t MgCl ₂	.09

Figure 4.24: Effect of conditioning time on ash % in float fraction at 2 Kg/t MgSO ₄ 70
Figure 4.25: Effect of pulp density on ash % in float fraction at 2 Kg/t MgSO ₄ 71
Figure 4.26: Effect of particle size on ash % in float fraction at 2 Kg/t MgSO ₄ 72
Figure 4.27: Cubic diagram of recovery % in float fraction at 2 Kg/t MgSO ₄ 72
Figure 4.28: Effect of conditioning time at 2 Kg/t MgSO ₄ and 2 Kg/t MgCl ₂ 74
Figure 4.29: Effect of pulp density at 2 Kg/t MgSO ₄ and 2 Kg/t MgCl ₂ 75
Figure 4.30: Effect of particle size at 2 Kg/t MgSO ₄ and 2 Kg/t MgCl ₂ 76
Figure 4.31: Cubic diagram of recovery % at 2 Kg/t MgSO4 and 2 Kg/t MgCl276
Figure 4.32: Interaction between pulp density and particle size of Canadian sample77
Figure 4.33: Interaction between conditioning time and particle size78
Figure 4.34: Interaction between pulp density and conditioning time79
Figure 4.35: Interaction between pulp density and conditioning time with salts80
Figure 4.36: Interaction between pulp density and particle size with salts81
Figure 4.37: Effect of individual salts on the ash content in the float (Egyptian coal)81
Figure 4.38: Effect of binary mixtures on ash % in the float of Egyptian sample85
Figure 4.39: Interaction between the salts in the binary mixtures of Egyptian sample87
Figure 4.40: Effect of binary mixtures on recovery % in the float of Egyptian sample 88
Figure 4.41: Effect of tertiary mixtures on ash % of Egyptian sample89
Figure 4.42: Effect of tertiary mixtures on recovery % of Egyptian sample90
Figure 4.43: Effect of frother and salts on ash % in the float92
Figure 4.44: Effect of frother on ash % in the float93
Figure 4.45: Effect of frother with salts on ash % in the float93

Abstract

Coal is a complex yet abundantly available energy source. The primary problem in using coal is the necessity to minimize its combustion products. Therefore, coal cleaning processes to remove these impurities and reduce their effects on the environment is one of the solutions to overcome this problem.

Wet processing techniques, especially the flotation techniques, are the most commonly used in coal processing plants. The depletion of distilled/de-ionized water as well as the presence of the most of the processing plants in desert areas mandates the searching for other resources. These resources include the sea water as well as the processing water. The main concern in using these types of water is the presence of appreciable concentration of salts. The previous studies showed that although the presence of salts deteriorates the flotation process for some minerals, it has several advantages in the flotation of the hydrophobic particles like coal. The advantages of using seawater in flotation not only include reducing the treatment costs obviously incurred from the use of distilled water, but also reducing the costs and the negative impacts of chemicals. Most of the reported studies use single salt and consequently illustrate the effect of salts on enhancing the recovery. However, either the process water or the sea water has several types of salts. Therefore, studying the flotation of coal in water with single, binary and tertiary salt mixtures needs to be tested to investigate the effect of each salt as well as the interaction of these salts.

Therefore, in this work, Canadian and Egyptian coal samples were obtained, prepared and characterized by proximate and ultimate analyses using ASTM standards. The characterization study of ash, moisture, volatile matter and fixed carbon revealed that Canadian and Egyptian samples can be classified as medium rank high volatile bituminous (b) class coal. The two coal samples were subjected to sampling procedures using coning and quartering technique followed by grinding and screening. In addition, the flotation of these coal samples was tested in the presence of different inorganic salts such as: NaCl, MgCl₂, CaCl₂ and MgSO₄. Two statistical designs were used to study the main effects as well as the interactive effects of used salts on the coal flotation taking the ash removal as a response. The first design is used to investigate the single and interactive effects between the used salts on both El-Maghara and Canadian coal samples by showing the effects of single, binary and tertiary mixtures of NaCl, MgCl₂ and CaCl₂ on ash removal from both coal samples. On the other hand, the second design was used to study the factors that affect the flotation process such as: pulp density, conditioning time, particle size and doses of MgCl₂ and MgSO₄ and consequently to find the optimum conditions of flotation and the best performing salt. In Canadian coal, the first design showed that MgCl₂ and CaCl₂ has the lowest and highest ash percentage 7.1 and 8.2 with dose 4 kg/t, respectively. In the second design, the lowest ash percentage 7.8 was at particle size of 400 µm, dose of 4 kg/t MgSO₄ and at 15 min conditioning time. It was observed that the magnesium salts affect the flotation positively in terms of ash removal while the presence of calcium in any mixture leads to reducing the ash removal. For recovery %, the highest recovery was 89.18 %. In El-Maghara coal, tertiary (NaCl, MgCl₂ and CaCl₂) and binary (MgCl₂ and CaCl₂) showed the highest and the lowest ash reduction, respectively. For recovery %, the highest recovery was 47 % with binary mixtures 4Kg/t MgCl2 and 4 Kg/t CaCl₂.

Chapter 1: INTRODUCTION

1.1. Background

In geological sense, coals are not minerals, but series of rocks layers that formed by piling up of vegetable matter and plant remains [1]. It also defined as combustible black or brownish-black sedimentary rock consists of carbon and hydrocarbons. The coal seams are mostly interbedded with sandy, silt, clayey formations, were originally horizontal or nearly horizontal. For coal forming, the most suitable areas are shallow-swampy environments. After accumulated of vegetable matter and plant remains in situ or drifted by water, chemical decay reduced under wet condition that subjected to bacterial action resulting in the formation of peat. Under high temperature and pressure of the plant material, chemical and physical changes were caused in the vegetation that was transformed it to peat and then to coal. The process of transforming plant remains to peat is known as the humification stage. Transformation of peat deposits into coal seam is known as a coalification process which gradually converts peat into lignite, sub-bituminous coal, bituminous coal, anthracite and under very high temperature may be produced a graphite that known as meta-anthracite, as shown in Fig 1.1[2].

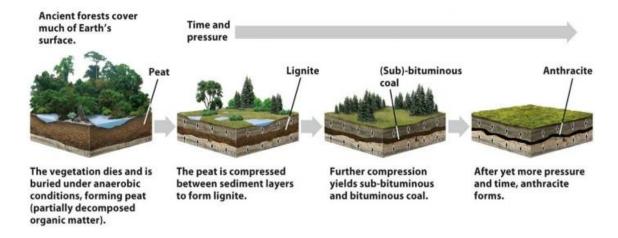


Figure 1.1: Transformation of coal

Coal is an organic material of complex nature and structure. It consists of carbon and hydrocarbon. Coal does not have specific chemical formula. It consists of many groups and units, aromatic, aliphatic, oxygen and nitrogen in smaller amounts. A simplified formula is shown in Fig 1.2 [3].

Figure 1.2: Simplified coal structure indicating its typical chemical groups [EU, ESF]

It is one of the most important sources of energy. This important role has been played for centuries not only supplying electricity, but also an important fuel for production of steel, cement, and the other industrial products. The fluctuation on the oil and gas prices keeps the coal as an alternative resource. Figure 1.3 shows the importance of coal in our lives through a simple example for what the coal can do in just 24 hours.

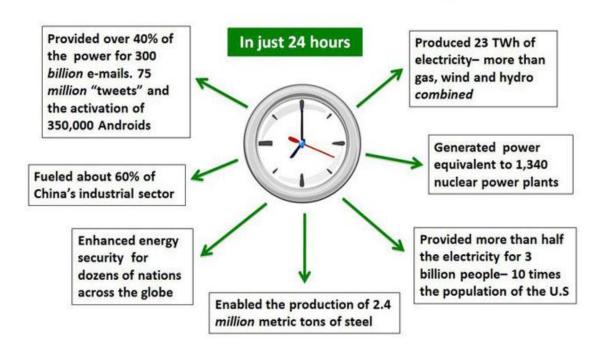


Figure 1.3: Importance and impact of coal in one day [IEA, EIA 2010]