

PHASOR MEASUREMENT UNIT BASED WIDE AREA BACKUP PROTECTION SCHEME FOR TRANSMISSION LINES

By

Eng. Ahmed Saber Abdelbary Refae

A thesis submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ir

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

PHASOR MEASUREMENT UNIT BASED WIDE AREA BACKUP PROTECTION SCHEME FOR TRANSMISSION LINES

By

Eng. Ahmed Saber Abdelbary Refae

A thesis submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Hany Amin Elghazaly	Associate Prof. Ahmed Mohamed
	Emam
•••••	•••••
Electrical Power and Machines Engineering	Electrical Power and Machines Engineering
Department, Faculty of Engineering, Cairo	Department, Faculty of Engineering, Cairo
University	University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

PHASOR MEASUREMENT UNIT BASED WIDE AREA BACKUP PROTECTION SCHEME FOR TRANSMISSION LINES

By

Eng. Ahmed Saber Abdelbary Refae

A thesis submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electrical Power and Machines Engineering

Approved by the Examining Committee:	
Prof. Hany Mohamed Amin Elghazaly	Thesis Main Advisor
Associate Prof. Ahmed Mohamed Emam Abdou	Advisor
Prof. Ahdab Mohamed Kamel Elmorshedy	Internal Examiner
Prof. Almoataz Youssef Abdelaziz Mohamed Professor in Faculty of Engineering Ain Shams University	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer: Ahmed Saber Abdelbary Refae

Date of Birth: 20/01/1986 **Nationality:** Egyptian

E-mail: a_saber_86@cu.edu.eg

Phone: 02/01064932480
Address: El-haram, Giza
Registration Date: 01/03/2014
Awarding Date: //2018

Degree: Doctor of Philosophy

Department: Electric Power and Machines Engineering

Supervisors:

Prof. Hany Mohamed Amin Elghazaly Associate. Prof. Ahmed Mohamed Emam

Examiners: Prof. Almoataz Youssef Abdelaziz (External examiner)

(Faculty of Engineering, Ain Shams University)

Prof. Ahdab Kamel Elmorshedy (Internal examiner)
Prof. Hany Amin Elghazaly (Thesis Main advisor)

Associate. Prof. Ahmed Mohamed Emam (advisor)

Title of Thesis:

Phasor Measurement Unit Based Wide Area Backup Protection Scheme for Transmission Lines

Key Words:

Transmission Line Fault Location, Phasor Measurement Unit, Wide Area Backup Protection, Cross-country Faults.

Summary:

This thesis proposes an innovative wide area backup protection scheme for untransposed single- or double-circuit transmission lines that can be applied as a substitute for third zone function of distance relay. The proposed scheme is derived based on the transmission line theory and Taylor series expansion of distributed line model parameters taking into account the effect of mutual couplings between the adjacent circuits. For large power network, a binary integer linear programming is utilized for determining the minimal number of PMUs to obtain complete fault observability. Synchronized voltage and current measurements obtained from PMUs are utilized for fault detection, faulty line identification, and fault location. Extensive simulation studies are applied to three-terminal untransposed double-circuit transmission lines and New England 39-bus test system and the simulation results prove that the proposed scheme yields acceptable performance for all simulated cases.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name: Ahmed Saber Abdelbary Refae Date: / / 2018

Signature:

Acknowledgments

All praises and thanks to Allah for guiding me to complete this dissertation by providing me with very valuable persons to support me during my work.

I thank Allah and my supervisors Prof. Hany Elghazaly and Dr. Ahmed Emam for their encouragement, helpful advice and the time they offered me during research period.

Finally, my thanks to my family for their encouragement, support, and patience all the time in order to complete my thesis in its best form.

Table of Contents

TABLE OF CONTENTS	iiii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xi
LIST OF SYMBOLS	xiii
ABSTRACT	xiii
CHAPTER 1: INTRODUCTION	1
1.1. Introduction	1
1.2. Literature Review	1
1.2.1. Applications of PMUs for Multi-terminal Transmission Lines	3
1.2.2. Applications of PMUs for Large Transmission Network	
1.2.3. Location Estimation for Evolving and Cross-country Faults	
1.3. Thesis Objectives	
1.4. Thesis Outlines	6
CHAPTER 2: WIDE AREA MONITORING SYSTEM (WAMS	5) 7
2.1. Introduction	7
2.2. Phasor Measurement Unit (PMU)	7
2.2.1. Definition of a phasor	8
2.2.2. Synchrophasor definition and measurements	8
2.2.3. Main components of PMUs	9
2.3. Communication System	9
2.4. Phasor Data Concentrator (PDC)	10
2.4.1. Real-Time Data Exchange	10
2.4.1.1. Data exchange between PDC and PMUs	10
2.4.1.2. Data exchange with other PDCs	10
2.4.1.3. Data exchange with SCADA (Supervisory Control and Data A EMS (Energy Management System)	
2.4.1.4. Data exchange for control and protection	11
2.4.1.5. Data exchange with visualization	11
2.4.2. Detection and Protection Functions	11
2.4.2.1. Low frequency oscillation detection	11

2.4	1.2.2.	Oscillation source location	11
2.4	1.2.3.	Angle difference detection	11
2.4	1.2.4.	Islanding detection	12
2.4	1.2.5.	Voltage stability detection	12
2.4.3. I	Data S	Storage	12
2.4.4. I	Data '	Visualization	12
2.5. Wid	le Are	ea Monitoring System (WAMS)	12
2.5.1. V	WAM	IS Architecture	12
2.5.2. I	Basics	s of Large Scale WAMS	14
2.6. App	licati	ons of PMUs in Power System	14
2.6.1. I	Power	r System Monitoring	14
2.6	5.1.1.	Early PMU Applications	14
2.6	5.1.2.	State Estimation	15
2.6.2. I	Power	r System Protection	16
2.6	5.2.1.	Transmission lines differential protection	16
2.6	5.2.2.	Performance control of backup relay	16
2.6	5.2.3.	Out-of-step protection	16
2.6	5.2.4.	Dependability versus security	16
2.6	5.2.5.	Adaptive system restoration	17
2.6	5.2.6.	Intelligent islanding	17
2.6	5.2.7.	Supervisory load shedding	18
	QUE	3: THE PROPOSED BACKUP PROTI FOR THREE-TERMINAL TRANSMISSION LIN	IES 19
		on	
		Location scheme for Two-Terminal Untransposed Doub	
	•	ed Backup Protection Scheme for Three-Terminal Mu Parallel Transmission Lines	
3.3.1. I	Fault 1	Detection	22
3.3.2. I	Faulty	Branch Identifier	24
3.3.3. I	Fault 1	Location	25
3.3.4. I	Fault	Classification	26
3.4. Prop	posed	Cross-country and Evolving Fault Location Scheme f	or Three-
Terminal	Untı	ransposed Double-Circuit Homogenous Lines	27

CHAPTER 4: PROPOSED WIDE AREA BACKUP PROTECTION SCHEME FOR LARGE TRANSMISSION NETWORK CONSIDERING	
CROSS-COUNTRY AND EVOLVING FAULTS	
4.1. Introduction	
4.2. Review of Optimal PMU Placement	
4.3. Faulty Zone Selection and Fault Detection	
4.4. Verification of Transmission Line Fault Occurrence Possibility in	The
selected Bus Zone	
4.5. Fault Location for Different Fault Types	
CHAPTER 5: RESULTS AND DISCUSSIONS	
5.1. Introduction	39
5.2. Three-Terminal Multisection Compound Untransposed Double-Ci	
Transmission Lines	
5.2.1. Various Loading Conditions	
5.2.1.1. Connecting loads	
5.2.1.2. Sudden loss of loads	
5.2.1.3. Generator outage	
5.2.2. External Fault Cases	
5.2.2.1. Transmission line faults outside the protected zone	
5.2.2.2. Bus faults	
5.2.3. Internal Fault Cases	
5.2.3.1. Internal transmission line faults	
5.2.3.2. Statistical results	51
5.2.3.3. Results of fault classification unit	52
5.2.4. Influence of Line Parameters Errors	54
5.2.5. Effect of Synchrophasor Errors	
5.2.6. Non-linear High Fault Impedance Effect	55
5.3. Fault Location Estimation Including Cross-country and Evolving Faults .	56
5.3.1. Testing of Normal Shunt Faults	57
5.3.2. Testing of Evolving Faults	60
5.3.3. Testing of Cross-country Faults	62
5.3.4. Effect of Neglecting The shunt Capacitance	67
5.3.5. Effect of Line Parameters Errors	68
5.3.6. Influence of Measurement Errors and Sampling Rate	68
5.3.7. Influence of Earth Resistivity Variation	69

5.3.8. Influence of Synchronization Errors	70
5.3.9. Comparison with technique in [22]	71
5.4. New England 39-Bus Test System	72
5.4.1. Generator Outages	72
5.4.2. Different Loading Conditions	72
5.4.3. External Faults "Bus Faults"	74
5.4.4. Normal Shunt Faults (One and Three Faulty Phases)	75
5.4.5. Normal Shunt (Two Faulty Phases) and Evolving Faults	76
5.4.6. Cross-country Faults	79
5.4.7. Influence of Synchronization errors	81
5.4.8. Influence of Errors in Transmission Lines Parameters	81
CHAPTER 6: CONCLUSIONS AND FUTURE WORK	83
6.1. Conclusions	83
6.2. Suggested Future Works	84
REFERENCES	85
PUBLISHED WORK	94
APPENDIX A	
APPENDIX B	
APPENDIX C	
	フフ

LIST OF TABLES

Table (1-1): Percentage of fault occurrence on different parts of power System2
Table (1-2): Percentage of fault occurrence on transmission line for normal shunt
faults
Table (4-1): Transmission lines and related bus zones for 39-bus system34
Table (5-1): Different test cases for connecting loads at different switching
angles41
Table (5-2): Different test cases for disconnecting loads at different switching
angles
Table (5-3): Different test cases for generators outages
Table (5-4): Different test cases for external transmission lines faults45
Table (5-5): External transmission lines faults with low and high fault resistance47
Table (5-6): Different test cases for bus faults
Table (5-7): Results of different test cases for different faulty sections49
Table (5-8): Output results of fault classification unit for different test cases52
Table (5-9): Results of different cases for normal shunt faults on branch S - G 57
Table (5-10): Results of different cases for normal shunt faults on branch R - G 58
Table (5-11): Results of different cases for normal shunt faults on branch T - G 58
Table (5-12): Results of different cases for evolving faults on branch S - G 61
Table (5-13): Results of different cases for evolving faults on branch <i>R-G</i> 61
Table (5-14): Results of different cases for evolving faults on branch <i>T-G</i> 62
Table (5-15): Results of different cases for cross-country faults on branch S - G 64
Table (5-16): Results of different cases for cross-country faults on branch R - G 65
Table (5-17): Results of different cases for cross-country faults on branch T-G65
Table (5-18): Comparing with previous technique in [22]71
Table (5-19): Effect of fault resistance on estimated error in fault location78
Table (5-20): Estimated error in fault location for different fault types79
Table (5-21): Estimated error in fault location for cross-country faults80
Table (5-22): Influence of synchronization errors on estimated fault location81
Table (5-23): Influence of line parameters errors on estimated fault location82

LIST OF FIGURES

Figure 2-1: Number of papers versus publication year	. 7
Figure 2-2: Sinusoidal waveform phasor representation. (A) Sinusoidal waveform	
(B) Phasor representation	. 8
Figure 2-3: Main components of PMU	.9
Figure 2-4: General structure of WAMS	13
Figure 2-5: (A) Centralized LS-WAMS, (B) Distributed LS-WAMS	
Figure 3-1: Faulty two-terminal double-circuit transmission line	21
Figure 3-2: Three-terminal nonhomogeneous transmission lines	23
Figure 3-3: Flowchart of the proposed technique	26
Figure 3-4: Three-terminal untransposed parallel transmission line	27
Figure 3-5: Cross-country fault in phases a_1 and c_1	29
Figure 3-6: The proposed scheme flow chart for cross-country and evolving	30
Figure 4-1: 39-bus test system one line diagram	33
Figure 4-2: The instantaneous value of $V_{i,j}$ for different phases at bus 2	34
Figure 4-3: Different types of sub-networks for any BZ	36
Figure 5-1: Simulated three-terminal double-circuit nonhomogeneous transmission	
lines	40
Figure 5-2: Voltage waveforms at terminal S due to connecting load at terminal S	41
Figure 5-3: The instantaneous value of V_i for phases of maximum ΔV_i at buses S, R ,	
and T due to connecting load at terminal S	42
Figure 5-4: Voltage waveforms at terminal R due to disconnecting load at terminal	
R	43
Figure 5-5: The instantaneous value of V_i for phases of maximum ΔV_i at buses S , R ,	
and T due to disconnecting load at terminal R	43
Figure 5-6: Voltage waveforms at terminal T due to generator outage (G_T)	44
Figure 5-7: The instantaneous value of V_i for phases of maximum ΔV_i at buses S , R ,	
and T due to generator outage (G_T)	44
Figure 5-8: Voltage waveforms at terminal S due to fault in line (1-S)	46
Figure 5-9: The instantaneous value of V_i for phases of maximum ΔV_i at buses S, R ,	
and T due to fault in line (1-S)	46
Figure 5-10: Voltage waveforms at terminal R due to fault in line $(1-R)$	47
Figure 5-11: The instantaneous value of V_i for phases of maximum ΔV_i at buses S, R	,
and T due to fault in line (1-R)	
Figure 5-12: Voltage waveforms at terminal S due to bus fault	48
Figure 5-13: The instantaneous value of V_i at bus S due to bus fault	48
Figure 5-14: Voltage waveforms at terminal S due to line (L_{SI}) fault	50
Figure 5-15: Current waveforms of circuit 1 at terminal S due to line (L_{SI}) fault	50
Figure 5-16: Current waveforms of circuit 2 at terminal S due to line (L_{SI}) fault	50
Figure 5-17: The instantaneous value of V_i at bus S due to line (L_{SI}) fault	51
Figure 5-18: The maximum and average percentage error in fault location for all line	3
sections	51

Figure 5-19: Voltage waveforms at terminal R due to line (L_{RI}) fault	52
Figure 5-20: Current waveforms of circuit 1 at terminal R due to line (L_{R1}) fault	53
Figure 5-21: Current waveforms of circuit 2 at terminal R due to line (L_{R1}) fault	53
Figure 5-22: The instantaneous value of V_i at bus R due to line (L_{R1}) fault	53
Figure 5-23: Effect of errors in line parameters on the fault location estimation	54
Figure 5-24: Effect of synchrophasor errors on the fault location estimation	55
Figure 5-25: Simulated three-terminal untransposed double-circuit homogeneous	
transmission line	56
Figure 5-26: Voltage waveforms at terminal S due to a_1c_2 fault in branch S - G	59
Figure 5-27: Current waveforms of circuit 1 at terminal S due to a_1c_2 fault in branch	1
S-G	59
Figure 5-28: Current waveforms of circuit 2 at terminal S due to a_1c_2 fault in branch	1
S-G	59
Figure 5-29: The instantaneous value of V_i at bus S due to a_1c_2 fault in branch S - G	60
Figure 5-30: Voltage waveforms at terminal R due to evolving fault on branch R-G.	.63
Figure 5-31: Current waveforms of circuit 1 at terminal <i>R</i> due to evolving fault on	
branch R-G	63
Figure 5-32: Current waveforms of circuit 2 at terminal <i>R</i> due to evolving fault on	
branch R-G	63
Figure 5-33: The instantaneous value of V_i at bus R due to evolving fault on branch	
R-G	64
Figure 5-34: Voltage waveforms at terminal <i>T</i> due to cross-country fault on branch	
<i>T-G.</i>	66
Figure 5-35: Current waveforms of circuit 1 at terminal T due to cross-country fault	ţ
on branch T-G	66
Figure 5-36: Current waveforms of circuit 2 at terminal T due to cross-country fault	ţ
on branch T-G	66
Figure 5-37: The instantaneous value of V_i at bus T due to cross-country fault on	
branch T-G	67
Figure 5-38: Effect of increasing the absolute of (D_2-D_1) on the estimated error%	67
Figure 5-39: Effect of increasing the absolute of (D_2-D_1) with different voltage leve	els
for line T-G on estimated error%	68
Figure 5-40: Average and maximum percentage errors considering transmission line	es
parameters errors	
Figure 5-41: Average and maximum percentage errors considering measurement	
errors	69
Figure 5-42: Average and maximum percentage errors for different sampling rate	70
Figure 5-43: Average and maximum percentage errors due to variation of earth	
resistivity	70
Figure 5-44: Average and maximum percentage errors considering synchronization	
errors	
Figure 5-45: Voltage waveforms at bus 23 due to generator outage (G_7)	
Figure 5-46: The instantaneous voltage values for different phases at bus 23 due to	
generator outage (G_7)	73

Figure 5-47: Voltage waveforms at bus 8 due to connecting load to bus 7	74
Figure 5-48: The instantaneous voltage values for different phases at bus 8 due to	
connecting load to bus 7	74
Figure 5-49: Voltage waveforms at bus 27 due to fault on bus 26	75
Figure 5-50: The instantaneous voltage values for different phases at bus 27 due to	
fault on bus 26	76
Figure 5-51: Voltage waveforms at bus 2 due to a-g fault on line 2-3	76
Figure 5-52: The instantaneous voltage values for different phases at bus 2 due to a-	g
fault on line 2-3	77
Figure 5-53: Voltage waveforms at bus 8 due to evolving fault on line 7-8	77
Figure 5-54: The instantaneous voltage values for different phases at bus 8 due to	
evolving fault on line 7-8	78
Figure 5-55: Voltage waveforms at bus 16 due to cross-country fault on line 16-24	80
Figure 5-56: The instantaneous voltage values for different phases at bus 16 due to	
cross-country fault on line 16-24	80

LIST OF ABBREVIATIONS

abs Absolute

A/D Analog to Digital Converter

BZ Bus Zone

CPU Central Processing Unit

CT Current Transformer

DFT Discrete Fourier Transform

EF External Fault

EMS Energy Management System

FACTS Flexible AC Transmission System

FL Fault Location

GB Giga Byte

GPS Global Positioning System

KCL Kirchhoff Current Law

LCC Load Change Condition

LG Line to Ground

LLG Double-Line to Ground

LL Double-Line
LLL Three-Line

LS-WAMS Large Scale-Wide Area Monitoring System

max Maximum min Minimum

NERC North American Electric Reliability Council

PDC Phasor Data Concentrator PMU Phasor Measurement Unit

RAM Random Access Memory

SCADA Supervisory Control and Data Acquisition

SIPS System Integrity Protection Scheme

SPS System Protection Scheme

SVMC Support Vector Machine Classifier

TSO Transmission System Operator

VT Voltage Transformer

WAMS Wide Area Monitoring System