

Cairo University Faculty of Veterinary Medicine

Biochemical effect of some chemical preservatives on reproductive effeciency in male albino rats

A thesis submitted by

Madeha Ahmed Riad Abd El Aziz

(BSc, Cairo University, 2005; M.S Ain Shams university, 2010)

For the degree of the

Ph.D in Veterinary Medicine Science (Biochemistry and chemistry of nutrition)

Under Supervision Of

Prof. Dr. Samy Ahmed Abd El Aziz

Professor of Biochemistry and chemistry of nutrition
Faculty of veterinary medicine
Cairo University.

Prof. Dr. Adel Mohamed El Behairy

Professor and head of Biochemistry and chemistry of nutrition

Faculty of veterinary medicine

Cairo University.

Prof. Dr. Mohamed Mohamed Mostafa Badawy

Professor of Biochemistry National Organization for Drug Control and Research

(2019)

Supervision sheet

Biochemical effect of some chemical preservatives on reproductive effeciency in male albino rats

A thesis Submitted

by

Madeha Ahmed Riad Abd El Aziz

(BSc, Cairo University, 2005; M.S Ain Shams university, 2010)

Prof. Dr. Samy Ahmed Abd El Aziz

Professor of Biochemistry and chemistry of nutrition Faculty of veterinary medicine Cairo University.

Prof. Dr. Adel Mohamed El Behairy

Professor and head of Biochemistry and chemistry of nutrition Faculty of veterinary medicine Cairo University.

Prof. Dr. Mohamed Mohamed Badawy

Professor of Biochemistry
National Organization for Drug Control and Research
(NODCAR).

Cairo University
Faculty of Veterinary Medicine
Department of Biochemistry and chemistry of nutrition

Name: Madeha Ahmed Riad

Nationality: Egyptian
Date of Birth: 25-5-1984
Place of Birth: Egypt

Degree: Philosophy Degree of Veterinary Medicine Sciences (Biochemistry and

chemistry of nutrition).

Title: Biochemical effect of some chemical preservatives on reproductive effeciency in

male albino rats Undersupervision of:

- Prof. Dr. Samy Ahmed Abd El Aziz (Professor of Biochemistry and chemistry of nutrition Faculty of veterinary medicine, Cairo University).

- Prof. Dr. Adel Mohamed El Behairy (Professor and head of Biochemistry and chemistry of nutrition Faculty of veterinary medicine, Cairo University).
- Dr. Mohamed Mohamed Badwy (Professor of Biochemistry at National Organization for Drug Control and Research, Egypt).

Abstract

Unbalanced exposure to environmental endocrine disruptor compounds during fetal or neonatal life evoked disruption in endocrine function during development. Triclosan and butylparaben are widely used as preservatives and it was reported to have estrogenic activity as EDC. The aim of current study is to address the potential impacts of individual or combined administration of triclosan, butyl paraben on the gonadal hormone and potential combined toxicity representing oxidative stress induction in testicular tissue in weanling male rats. Weanling male rats were orally administered individual or combined butylparaben, triclosan (50 mg kg⁻¹day⁻¹) for 4weeks and 8 weeks, followed by determining the serum gonadal hormones, oxidative stress parameters and DNA damage using comet assay in testicular tissues. Results revealed that treated groups compared to control groups caused significant depletion in count and motility of sperm, the relative weight of (SATs) Sex accessories tissue, and levels of (T), (LH), (FSH), T/E₂ and T/LH. Alongside, individual treatment significantly increases (E2) levels, whereas combined treatment nonsignificantly decreased its level. All treated groups did not alter the mean differences of both right and left testis relative weights. A significant elevation in oxidative parameters and an obvious testicular DNA damage was recorded. Moreover, a disturbance of antioxidant parameters in all treated groups was observed. Our results revealed that combined treatment aroused an endocrine disturbance activity with a concomitant induction of testicular oxidative stress status which may represent a common mechanism in an endocrine disruptor-mediated dysfunction.

Keywords: Triclosan- Butylparaben- combined toxicity-reproductive toxicity.

Acknowledgement

I am extremely grateful and sincerely appreciated to **Prof. Dr. Samy Ahmed Abd El Aziz**, Professor of Biochemistry and chemistry of nutrition, Faculty of veterinary medicine, Cairo University for his scientific supervision, continuous enforcement, sincere cooperation, generous support throughout the work and revising this thesis.

I would like to express sincere appreciation and gratitude to **Prof. Dr.**Adel Mohamed El Bahiry, Professor of Biochemistry and chemistry of nutrition, Faculty of veterinary medicine, Cairo University for his supervision, indispensable support, sincere cooperation, generous help throughout the work and revising this thesis.

Sincere thanks are extended to soul of **Prof. Dr. Mohamed Mohamed Mostafa Badwy**, professor of Biochemistry, National Organization for Drug Control and Research for his supervision, valuable pieces of advice, guidance and sentimental support.

I would like to express my great thanks appreciation to **Dr. Marwa Mokhtar Abd Rabo**, Assistant Professor of Biochemistry, National Organization for Drug Control and Research, for her valuable assistance in biochemical analyses methods and writing the thesis in this study.

I acknowledge with thankfulness all of my colleagues in Hormone Evaluation Lab at National Organization for Drug Control and Research for their friendly cooperation, support and unconditional aid.

I would like to express my thanks to my family for their patience, support and continuous encouragement.

CONTENTS

List of figuresI
List of AbbreviationsII
Introduction1
Review of literature Environmental Agents
Published papers The possible toxic effects of triclosan and butylparaben on male rats56 Reproductive toxic impact of subchronic treatment with combined butylparaben and triclosan in weanling male rats64
Discussion Body weight
Conclusion and Recommendation102
Summary104

References	108
Arabic summary	

List of Figures

Figure title	page
Figure (2-1): Hormonal regulation of spermatogenesis.	5
Figure (2-2): The hypothalamic-pituitary axis.	8
Figure (2-3): Synthesis of estradiol in testis.	14
Figure (2.4): Estrogen sources and targets in the male	16
reproductive tract.	
Figure (2-5): Comparison of the structure of ER α and ER β	17
proteins.	
Figure (2-6): Model of estrogen receptors function. Estrogen	19
receptors interact directly with c-Src (1), or indirectly by	
binding E ₂ to GPER (2).	
Figure (2-7): Summary of the likely localization of $ER\alpha$,	22
ERβ and aromatase in the adult testis.	
Figure (2-8): Metabolism of 17-β estradiol (E ₂) to 2-hydroxy	
estrone (2-OHE1) and 16α-hydroxyestrone (16α-OHE1).	
Figure (2-9): The chemical structures of seven alkyl esters of	30
p-hydroxybenzoic acid (parabens) which are commonly used	
in consumer products. Hydrolysis of the ester linkage (arrow)	
gives the common paraben metabolite p-hydroxybenzoic acid.	
Figure (2-10): Metabolic routes of paraben in man.	32
Figure (2-11): Chemical structure of triclosan	36
Figure (2-12): Simplified scheme of triclosan metabolism.	43

List of abbreviations

ADP	A denosina dinhasahata
ADP	Adenosine diphosphate
AhR	aryl hydrocarbon
AMA	American Medical Association
АРНА	American Public Health Association
ATP	Adenosine triphosphate
BP	Butyl paraben
BPA	Bisphenol A
cAMP	cyclic adenosine monophosphate
CAT	Catalase
CoQ	Coenzyme Q
DDT	Dichlorodiphenyltrichloroethane
DNA	Deoxyribonucleic acid.
DSP	daily sper production
DTNB	5, 5 dithiobis (2-nitrobenzoic acid)
\mathbf{E}_2	Estradiol
EDs	Endocrine disruptors
EDCs	Endocrine disruptor chemicals
EDTA	Ethylene diamine tetracetic acid
ER	Estrogen receptor
EROD	ethoxyresorufin Odeethylase

Π

EPA	Environmental Protection Agency
FDA	Food and Drug Administration
FSH	Follicle-stimulating hormone
GnRH	Gonadotropin releasing hormone
GPx	Glutathione peroxidase
GR	Glutathione reductase
GSH	glutathione
GST	Glutathione S-transferase
н&Е	Haematocylcine and Eosin stain
H ₂ O ₂	Hydrogen peroxide
но.	Hydroxyl radical
hPXR	human pregnane X receptor
IBA	isobutyl paraben
LCs	Leydig cells
LH	Luteinizing hormone
LPO	Lipid peroxidation
MCF-7	Michigan Cancer Foundation-7
MDA	Malondialdehyde
MPT	Mitochondrial Permeability Transition
NADH	Nicotinamide adenine dinucleotide (reduced)
NADP	Nicotinamide adenine dinucleotide phosphate (

	oxidized)
NADPH	Nicotinamide adenine dinucleotide phosphate (reduced)
NaN ₃	Sodium azide
NaOH	Sodium hydroxide
NED	N-(1- Naphthyl) ethylenediamine
NO	Nitric oxide
NODCAR	National Organization of Drug Control And Research
NOECs	No observed effect concentrations
NOEL	no observed effect level
NOS	Nitric oxide synthase
O2*-	Superoxide anion
ONOOH	Peroxonitrous acid
OONO-	peroxynitrite
OP	Octyl phenol
PCB	polychlorinated biphenyl
PHBA	p-hydroxybenzoic acid
PROD	pentoxyresorufin O-depentylase
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
rpm	Revolution per minute

SATS	Sex accessories
SC	Sertoli cells
S.D.	Standard deviation
SDH	Succinate dehydrogenase
SHBG	sex/steroid hormone-binding globulin
SOD	Superoxide dismutase
SPSS	Statistical Package for Social Science
STAR	steroidogenic acute protein
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid reactive subestance
TBG	Thyroglobulin
TCDD	2, 3, and 7, 8- tetrachlorodibenzo-p-dioxin
TEBG	testosterone-estrogen-binding globulin
TSC	Triclosan
UGT	UDP- glucuronosyl-transferases
US	United States
USFDA	US Food and Drug Agency
UV	Ultraviolet.
VCl ₃	Vanadium chloride
Vtg	vitellogenin

Chapter (1)

Introduction

INTRODUCTION

Based on accumulating evidence, exposure to various endocrine disruptor compounds (EDCs) may disrupt the normal androgen and estrogen balance in animals and humans, potentially leading to sex hormone-sensitive diseases/disorders (Diamanti-Kandarakis al.,2009; Habauzit et al., 2011). These phenomena have prompted researchers to address the risks of mixtures of EDCs, where the adverse effects of EDCs may be derived from mixtures of compounds and not from exposure to a single compound. Several in vitro studies discussed the effect of combined mixture of EDCs using different in vitro assay models. The toxic effect of these combinations fluctuated and were synergistic, antagonistic even additive, based on the nature and concentration of EDCs to enhance toxicity (Payne et al., 2001 ; Gray et al 2001 Charles et al 2002; Crofton et al.,2005; Kortenkamp.,2007).

Butyl paraben (BP) is considered a marked preservative in many personal care and pharmaceutical products (**Zhang** *et al.*, **2016**) In vivo studies have revealed the controversial estrogenic activity of BP in an immature rodent model. According to research of **Oishi**, (**2001**, **2002**^b) BP is toxic to the reproductive system of immature male mice and rats at doses more than 100 mg/kg bwt. A similar experimental design was conducted by Hoberman and colleagues (**Hoberman** *et al.*,**2008**) for 3 months using more animals in each group, and the data revealed that BP did not alter reproductive organs. Exposure pregnant Wistar female rats to varying doses of BP indicated that BP act as an estrogenic agent

at a dose of 200 mg/kg bwt, by enhancing aromatase activity to increase synthesis of estrogen hormone, which lead to depletion in testosterone levels in offspring male rats (**Zhang** et al.,2014) Paradoxically, **Kang** et al.(2002) revealed that BP at doses of 100 or 200 mg/kg bwt did not change the reproductive organs in offspring female rat. Triclosan is a potent antimicrobial agent that is widely used as preservative in personal care products, plastics, and fabrics (**Black** and Howes,1975 and Zorrilla et al.,2009).

In vivo study for estrogenic activity of triclosan showed that it potentially induced vitellogenin expression in male medaka while decreasing the hatchability and delaying the hatching in females (Ishibashi et al.,2004). Moreover, exposure of japanese rice fish (Oryzias latipes) also known as the medaka, to different doses of triclosan or 17 pestradiol did not support the hypothesis that triclosan has estrogenic activity, and thus triclosan is believed to be a potential weak androgenic agent. (Foran et al.,2000)

Zorrilla *et al.*, (2009) revealed that oral administration of triclosan with different doses did not affect the onset of preputial separation (PPS), where testosterone levels were significantly decreased only at a dose of 200 mg/kg. Conversely, **Feng** *et al.*,(2009) revealed that administration of triclosan, with different doses to pregnant rats, from gestation day 6 to gestation day 20, decreased offspring uterine weight. Furthermore, it induced a depletion in human chorionic gonadotropin hormone, E2, Testosterone hormone levels as well as prolactin, while it did not alter both follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels only at 600 mg/kg