

NUMERICAL INVESTIGATION OF THERMAL-HYDRAULICS CHARACTERISTICS IN ENHANCED TUBES

By

Eng. Amr Kaood Ismail Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
in
Mechanical Power Engineering

NUMERICAL INVESTIGATION OF THERMAL-HYDRAULICS CHARACTERISTICS IN ENHANCED TUBES

By

Eng. Amr Kaood Ismail Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
in
Mechanical Power Engineering

Under the Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil

Professor, Mechanical Power Engineering Faculty of Engineering, Cairo University

Dr. Taher Mohamed Abou-Deif

Assistant Professor, Mechanical Power Engineering Faculty of Engineering, Cairo University

Dr. Mohamed Ahmed Ali Yehia

Associate Professor, Mechanical Power Engineering Faculty of Engineering, Cairo University

Dr. Hamed Ragaa Eltahan

Assistant Professor, Mechanical Engineering Faculty of Engineering, Fayoum University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

NUMERICAL INVESTIGATION OF THERMAL-HYDRAULICS CHARACTERISTICS IN ENHANCED TUBES

By

Eng. Amr Kaood Ismail Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
in
Mechanical Power Engineering

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil Mechanical Power Engineering Deprt Faculty Of Engineering – Cairo University	Thesis Main Advisor
Prof. Dr. Mahmoud Abdel Wahab Kassem Mechanical Power Engineering Deprt Faculty Of Engineering – Cairo University	Member
Prof. Dr. Osama Ezzat Abdel-Latif Mechanical Power Engineering Deprt Faculty Of Engineering – Benha University	Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Amr Kaood Ismail Mohamed

Date of Birth: 20/10/1988 Nationality: Egyptian

E-mail: aki03@fayoum.edu.eg

Phone: 01226269892
Address: Giza-Egypt
Registration Date: 01/10/2014
Awarding Date:/.../ 2018

Degree: Doctor of Philosophy

Department: Mechanical Power Engineering

Supervisors:

Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Mohamed Ahmed Ali Yehia Dr. Taher Mohamed Abou-Deif

Dr. Hamed Ragaa Eltahan (Assistant Professor, Mechanical Engineering Deprt. – Faculty of Engineering,

Fayoum University)

Examiners:

Prof. Dr. Essam E. Khalil Hassan Khalil

(Thesis main advisor)

Prof. Dr. Mahmoud Abdel Wahab Kassem

(Internal examiner)

Prof. Dr. Osama Ezzat Abdel-Latif (External examiner) Professor, Mechanical Power Engineering – Faculty of

Engineering, Benha University.

NUMERICAL INVESTIGATION OF THERMAL-

Title of Thesis: HYDRAULICS CHARACTERISTICS IN

ENHANCED TUBES

Key Words: Friction factor; Nusselt number; Heat transfer

enhancement; corrugated tube; PEC.

Summary:

Thermal and hydraulic characteristics of turbulent water flow in a transverse corrugated tube with various corrugation directions (inward/outward/oscillating), and corrugation shapes (triangle, curve, rectangle and trapezoid) are numerically investigated. The influence of combination between the corrugated tube with twisted tape insert and wire-coiled insert is also conducted in the current study. The model of corrugated tubes with 10 mm inner diameter was investigated by changing the geometrical parameters for within a range of Reynolds number from 5,000 to 61,000 and constant heat flux boundary condition. Structured, non-uniform grid system is applied. Momentum, continuity and energy equations were treated by means of a finite volume method using the SIMPLE scheme with the k–ɛ turbulence model and enhanced wall treatment. The effect of a combination between the various corrugated tubes and twisted tape insert (TT) and corrugated tubes and wire-coiled insert (WCI) on the thermal-hydraulic characteristics were also studied in the current study.

Disclaimer

I hereby declare that this thesis is my own or submitted for a degree qualification at any other u I further declare that I have appropriately acknowled in the references section.	niversity or institute.
Name: Amr Kaood Ismail	Date:
Signature:	

Acknowledgments

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for His generousness and support through all my life.

I would like to thank Prof. Essam E. Khalil, Associt. Prof. Mohamed A. Yehia, Dr. Taher Mohamed and Dr. Hamed Eltahan for their guidance, unremitting encouragement and distinctive supervision. I am grateful to them, and to all my respectful professors, for mentoring me throughout my undergraduate and graduate study.

Thanks are also to my colleagues and friends for their encouragement and support.

Finally, I hope all mercy from ALLAH to soul of my father. And all health for my mother. I would like to thank my family for their continuous support, for helping me achieving my targets and for providing me suitable atmosphere for study and research. Especially my brothers (Ahmed, Mohamed, Basem, Hamdy, Alaa, Osama, Gamal and Sisters (Manal, Doaa)). I would like to thank my wife Dr. Alyaa and my daughter Aisel for their continuous support and sustained my bad modes and hard moments during completing my thesis.

Amr Kaood

Table of Contents

Contents

D	isclair	ner	i
A	cknov	vledgments	ii
T	able o	f Contents	. iii
L	ist of	Гables	v
L	ist of l	Figures	. vi
L	ist of S	Symbols, Abbreviations and Nomenclature	xiii
A	bstrac	et	xvi
1	Ch	apter 1: Introduction	1
	1.1	Background	1
	1.2	Computational Fluid Dynamics (CFD) and Thermal-Hydraulic Characteristics	s 1
	1.3	Techniques of Heat Transfer Enhancement	2
	1.3.	1 Corrugated Tubes	2
	1.3.	2 Twisted tape inserts	3
	1.3.	3 Wire coiled inserts	4
	1.4	Performance Evaluation Criteria (PEC)	5
2	Ch	apter 2: Literature Review	6
	2.1	Roughened/Corrugated tubes	6
	2.2	Tubes Fitted with Twisted Tape Inserts	14
	2.3	Tubes Fitted with Wire-Coiled Inserts	22
	2.4	Summary and Scope of the Present Study	. 28
3	Ch	apter 3: Model Description and Governing Equations	. 29
	3.1	Introduction	. 29
	3.1.	1 Turbulence Models	. 29
	3.1.	2 Wall Treatment	. 30
	3.2	Model Description	31
	3.2.	1 Corrugated tube	. 31
	3.2.	2 Combination of corrugated tube with twisted tape insert	. 34
	3.2.	3 Combination of corrugated tube and wire-coiled insert	. 35
	3.3	Mathematical Methods and Governing Equations	36

	3.4	Boundary Conditions and Data Reduction	38
4	Ch	apter 4: Grid Sensitivity and Model Validation	40
	4.1	Mesh Generation and Independence Test	40
	4.1.	1 Corrugated Tube	40
	4.1.	2 Combination of Corrugated Tube and Twisted Tape Insert	42
	4.1.	Combination of Corrugated Tube and Wire-Coiled Insert	45
	4.2	Validation	47
5	Ch	apter 5: Results and Discussion	51
	5.1	Corrugated tube	51
	5.1.	1 Heat transfer and friction factor for inward corrugation	51
	5.1.	2 Heat transfer and friction factor for outward corrugation	53
	5.1.	3 Heat transfer and friction factor for oscillating corrugation	56
	5.1.	4 Correlations	59
	5.1.	5 The Overall Thermo-Hydraulic Performance	61
	5.1.	6 Fluid Flow Structure	65
	5.2	Combination of Corrugated Tube with Twisted Tape Insert (TT)	69
	5.2.	1 Heat transfer and friction factor for inward corrugation	69
	5.2.	2 Heat transfer and friction factor for outward corrugation	71
	5.2.	3 Correlations	74
	5.2.	The Overall Thermo-Hydraulic Performance	75
	5.2.	5 Fluid Flow Structure	77
	5.3	Combination of Corrugated Tube with Wire-coiled Insert (WCI)	96
	5.3.	1 Heat transfer and friction factor for inward corrugation	96
	5.3.	2 Heat transfer and friction factor for outward corrugation	98
	5.3.	3 Correlations	101
	5.3.	The Overall Thermo-Hydraulic Performance	102
	5.3.	5 Fluid Flow Structure	104
6	Ch	apter 6: Conclusions and Future Work	123
	6.1	Conclusions	123
	6.2	Recommendation for Future Works	125
7	RF	FERENCES	126

List of Tables

Table 1-1 Categorization of Heat Transfer Enhancement Techniques	2
Table 3-1 Recommended range of y ⁺ for the wall treatment functions	31
Table 3-2 Geometrical parameters of twisted tape insert	35
Table 3-3 Geometrical parameters of wire-coiled insert.	36
Table 4-1 Grids number for studied corrugation shapes at Re = 30,000	42
Table 4-2 Grids number for various corrugated tube fitted with twisted tape insert at Re =	
20,000	44
Table 4-3 Grids number for various corrugated tube fitted with wire-coiled insert at Re = 6	1,000.
	47
Table 5-1 Correlations of Nusselt number and friction factor for the inward corrugated tub	es . 61
Table 5-2 Correlations of Nusselt number and friction factor for the outward corrugated tu	ıbes 61
Table 5-3 Correlations of Nusselt number and friction factor for the oscillating corrugated	tubes
	61
Table 5-4 Correlations of Nusselt number and friction factor for the inward corrugated tub	es
fitted with twisted tape insert (TT)	74
Table 5-5 Correlations of Nusselt number and friction factor for the outward corrugated tu	ıbes
fitted with twisted tape insert (TT)	75
Table 5-6 Correlations of Nusselt number and friction factor for the inward corrugated tub	es
fitted with wire-coiled insert (WCI)	101
Table 5-7 Correlations of Nusselt number and friction factor for the outward corrugated tu	ıbes
fitted with wire-coiled insert (WCI)	102

List of Figures

Figure 1-1 Sketch of corrugated tube [12]	3
Figure 1-2 Picture of corrugated tubes [12]	3
Figure 1-3 Twisted tape insert	4
Figure 1-4 Wire coiled insert	
Figure 2-1 Schematic of rib roughness [17]	6
Figure 2-2 Layout of inclined ribs [18]	7
Figure 2-3 Configuration and coordinate system of a corrugated tube [19]	7
Figure 2-4 <i>f</i> for different e/d, p/d and Re [20]	8
Figure 2-5 Schematic of the squared ribbed tube [22]	8
Figure 2-6 Manufactured ribbed tube [23]	9
Figure 2-7 Helical ribbed tube [14]	9
Figure 2-8 Helical micro-finned tube [24]	. 10
Figure 2-9 Helical corrugated tube [25]	. 10
Figure 2-10 Schematic of corrugated coiled tube HEX [26]	. 11
Figure 2-11 Schematic parameters of roughened tubes [27]	. 11
Figure 2-12 Configuration of grooved channel [29]	. 12
Figure 2-13 Nu of different nanofluids for rectangular groove [30]	. 12
Figure 2-14 Schematic of the transversely corrugated channel [2]	. 13
Figure 2-15 Configuration of non-uniform corrugated tube [31]	. 13
Figure 2-16 Typical and free spaced twisted tape insert [32]	. 14
Figure 2-17 Examined tube with different tape-length ratios of TT [33]	. 14
Figure 2-18 Configurations of the tested twisted tape with/without wire-nails [34]	. 15
Figure 2-19 (a) Twisted tape (b) Twisted tape with rod (c) Helical twisted tape with rod [35]	. 15
Figure 2-20 Configuration of internal 3D fins [36]	. 16
Figure 2-21 Schematic of the grooved tube and TT [37]	. 16
Figure 2-22 (a) Twisted tape fitted with uniform wire coil (b) Twisted tape fitted with non-	
uniform wire coil D-coil (c) DI-coil [38]	. 17
Figure 2-23 (a) Duct fitted with twisted tape. (b) configuration of internal ribs [39]	. 18
Figure 2-24 Micro-finned tube fitted with a different arrangements of single/double twisted	
tape inserts [40].	. 18
Figure 2-25 Twin twisted tape insert fitted with helically ribbed tube [41]	. 19
Figure 2-26 (a) Helical ribs (b) Center-cleared twisted tape fitted with the tube [42]	. 19
Figure 2-27 Configuration of examined tubes [43].	. 20
Figure 2-28 Configurations of tested tube [44]	. 21
Figure 2-29 Micro-finned tube and twisted tape inserts [45]	. 21
Figure 2-30 Configuration of wire-coiled insert fitted with smooth tube [50]	. 22
Figure 2-31 Configuration of tested tube [52]	. 23
Figure 2-32 Schematic of test tube [53]	. 23

Figure 2-33 (a) Wire-coiled touch wall of duct (b) Wire-coiled displaced from wall of duct (c)	
Inward ribs [54].	24
Figure 2-34 Geometry of test tube [55]	
Figure 2-35 Test section [56]	
Figure 2-36 Layout of center-cleared twisted tape insert [57]	25
Figure 2-37 Test tubes [58]	26
Figure 2-38 Wire-coiled combined with helical screw-tape and fitted with smooth tube [59]	26
Figure 2-39 Different configurations of wire-coiled insert [60]	27
Figure 2-40 Schematic of triangular wire-coiled insert fitted with smooth tube [61]	27
Figure 3-1 Subdivisions of the Near-Wall Region	30
Figure 3-2 Corrugation shapes with different ribs direction	32
Figure 3-3 Oscillating inward/outward ribs	32
Figure 3-4 Geometric parameters	33
Figure 3-5 Schematic illustration of roughened tube: (i) physical model for roughened tube (i	i)
2D axisymmetric computational domain (iii) portion of the test section	33
Figure 3-6 (a) Schematic of full model (b) Portion of test section (corrugation fitted with TT).	34
Figure 3-7 (a) Corrugated tube fitted with twisted tape insert. (b) Geometric parameter of th	e
twisted tape	34
Figure 3-8 (a) Schematic of full model (b) Portion of test section (corrugation fitted with WCI). 35
Figure 3-9 (a) Corrugated tube fitted with wire-coiled insert. (b) Geometric parameter of the	
wire-coiled element	36
Figure 3-10 Variation of residuals with number of iterations	38
Figure 4-1 Grid system for (a) Curved outward ribs (b) Triangular outward ribs (c) Curved inw	ard
ribs (d) Triangular inward ribs	40
Figure 4-2 Grid independence test for corrugated tube at Re = 30,000	
Figure 4-3 Grid system of corrugated tube fitted with TT	42
Figure 4-4 (a) Radial grid distribution (b) Grid inflation tangent to tube wall and TT	43
Figure 4-5 Grids quality at axial plane	43
Figure 4-6 Grid independence test for corrugated tube fitted with TT at Re = 20,000	
Figure 4-7 Grid system of corrugated tube fitted with WCI	45
Figure 4-8 (a) Grid distribution of longitudinal section (b) Grid inflation tangent to tube wall a	and
WCI	45
Figure 4-9 Grids quality at a longitudinal section	46
Figure 4-10 Grid independence test for corrugated tube fitted with WCI at Re = 61,000	46
Figure 4-11 Validation of Nusselt number for smooth tube	
Figure 4-12 Validation of friction factor for smooth tube	48
Figure 4-13 Validation of Nusselt number for inward rectangle ribbed tube [11]	49
Figure 4-14 Validation of friction factor for inward rectangle ribbed tube [11]	49
Figure 4-15 Validation of Nusselt number for inward half-circled ribbed tube [31]	50
Figure 4-16 Validation of friction factor for inward half-circled ribbed tube [31]	50
Figure 5-1 Nu versus Re for various inward ribs.	51
Figure 5-2 Nu ratio versus Re for various inward ribs	52
Figure 5-3 Friction factor (f) versus Re for various inward ribs	52
Figure 5-4 Friction factor ratio versus Re for various inward ribs	53

Figure 5-5 Nusselt number versus Re for various outward ribs	54
Figure 5-6 Nu ratio versus Re for various outward ribs.	54
Figure 5-7 Friction factor (f) versus Re for various outward ribs.	55
Figure 5-8 Friction factor ratio versus Re for various outward ribs	56
Figure 5-9 Nu versus Re for various oscillating inward/outward ribs	57
Figure 5-10 Nu ratio versus Re for various oscillating inward/outward ribs	57
Figure 5-11 Friction factor (f) versus Re for various oscillating inward/outward ribs	58
Figure 5-12 Friction factor ratio versus Re for various oscillating inward/outward ribs	58
Figure 5-13 Comparison of Nu values between the CFD and correlation (5.1)	60
Figure 5-14 Comparison of f values between the CFD and correlation (5.2)	60
Figure 5-15 PEC versus Re for various inward ribs.	
Figure 5-16 PEC versus Re for various outward ribs.	
Figure 5-17 Average/Maximum PEC for various ribs.	
Figure 5-18 PEC versus Re for various oscillating inward/outward ribs	64
Figure 5-19 Average/Maximum PEC for various oscillating inward/outward ribs	64
Figure 5-20 Results contours at Re =61,000 for smooth tube (a) TKE (b) Velocity vectors	65
Figure 5-21 TKE for various inward ribs (a) Curve (b) Triangle (c) Rectangle (d) Trapezoid	66
Figure 5-22 TKE for various outward ribs (a) Curve (b) Triangle (c) Rectangle (d) Trapezoid	66
Figure 5-23 Velocity vectors for various inward ribs (a) Curve (b) Triangle (c) Rectangle (d)	
Trapezoid	67
Figure 5-24 Velocity vectors for various outward ribs (a) Curve (b) Triangle (c) Rectangle (d)	
Trapezoid	67
Figure 5-25 Velocity profile at axial plane 0.0865 m at Re = 61,000 for (a) Smooth tube (b)	
Inward curved ribs (c) Inward triangular ribs (d) Inward rectangular ribs (e) Inward trapezoic	
ribs (f) Outward curved ribs (g) Outward triangular ribs (h) Outward rectangular ribs (i) Outv	
trapezoidal ribs	
Figure 5-26 Nu versus Re for twisted tape (TT) fitted with various inward ribs	
Figure 5-27 Nu ratio versus Re for twisted tape (TT) fitted with various inward ribs	
Figure 5-28 Friction factor (f) versus Re for twisted tape (TT) fitted with various inward ribs	
Figure 5-29 Friction factor ratio versus Re for twisted tape (TT) fitted with various inward rik	
Figure 5-30 Nusselt number versus Re for twisted tape (TT) fitted with various outward ribs.	
Figure 5-31 Nu ratio versus Re for twisted tape (TT) fitted with various outward ribs	
Figure 5-32 Friction factor (f) versus Re for twisted tape (TT) fitted with various outward ribs	
Figure 5-33 Friction factor ratio versus Re for twisted tape (TT) fitted with various outward r	
Figure 5-34 PEC versus Re for twisted tape (TT) fitted with various inward ribs	
Figure 5-35 PEC versus Re for twisted tape (TT) fitted with various outward ribs.	
Figure 5-36 Average/Maximum PEC for twisted tape (TT) fitted with various ribs.	
Figure 5-37 Contour plots of TKE across the longitudinal plane at Re = 10,000 for (a) Smooth	
tube (b) Smooth tube fitted with TT.	
Figure 5-38 Contour plots of TKE at axial plane 0.0865 m at Re = 10,000 for (a) Smooth tube	
Smooth tube fitted with TT.	/9
Figure 5-39 Contour plots of TKE across the longitudinal plane at Re = 10,000 for inward	70
corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal	79

Figure 5-40 Closed-view for contour plots of TKE across the longitudinal plane at Re = 10,000 for inward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal.
Figure 5-41 Contour plots of TKE at axial plane 0.0865 m at Re = 10,000 for inward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal
Figure 5-44 Contour plots of TKE at axial plane 0.0865 m at Re = 10,000 for outward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Trapezoidal (d) Rectangular
Figure 5-48 Contour plots of velocity across the longitudinal plane at Re = 10,000 for inward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal
Figure 5-50 Closed-view of velocity stream lines across the longitudinal plane at Re = 10,000 for inward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal.
Figure 5-51 Velocity vectors at axial plane 0.0865 m at Re = 10,000 for inward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal
Figure 5-54 Closed-view of velocity stream lines across the longitudinal plane at Re = 10,000 for outward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Trapezoidal (d) Rectangular
Figure 5-55 Velocity vectors at axial plane 0.0865 m at Re = 10,000 for outward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Trapezoidal (d) Rectangular
Figure 5-57 Closed-view of temperature contours across the longitudinal plane at Re = 10,000 for (a) Smooth tube (b) Smooth tube fitted with TT

Figure 5-59 Contour plots of temperature across the longitudinal plane at Re = 10,000 for inward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal Figure 5-60 Closed-view of temperature contours across the longitudinal plane at Re = 10,000 for inward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d)	
Trapezoidal	91
Figure 5-61 Temperature contours at axial plane 0.0865 m at Re = 10,000 for inward corrugate	
tubes fitted with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal	
Figure 5-62 Contour plots of temperature across the longitudinal plane at Re = 10,000 for	_
outward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Trapezoidal (d)	
Rectangular	92
Figure 5-63 Closed-view of temperature contours across the longitudinal plane at Re = 10,000	J _
for outward corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Trapezoidal (d)	
Rectangular	93
Figure 5-64 Temperature contours at axial plane 0.0865 m at Re = 10,000 for outward	,,
corrugated tubes fitted with TT (a) Curved (b) Triangular (c) Trapezoidal (d) Rectangular	03
Figure 5-65 Iso-surface of swirling strength at Re = 10,000 for (a) Smooth tube (b) Smooth tube	
fitted with TT.	
Figure 5-66 Iso-surface of swirling strength at Re = 10,000 for inward corrugated tubes fitted	3 4
	0.
with TT (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal.	
Figure 5-67 Iso-surface of swirling strength at Re = 10,000 for outward corrugated tubes fitted	
with TT (a) Curved (b) Triangular (c) Trapezoidal (d) Rectangular.	
Figure 5-68 Nu versus Re for wire-coiled insert (WCI) fitted with various inward ribs	
Figure 5-69 Nu ratio versus Re for wire-coiled insert (WCI) fitted with various inward ribs	97
Figure 5-70 Friction factor (f) versus Re for wire-coiled insert (WCI) fitted with various inward	
ribs	
Figure 5-71 Friction factor ratio versus Re for wire-coiled insert (WCI) fitted with various inwar	
ribs	
Figure 5-72 Nu versus Re for wire-coiled insert (WCI) fitted with various outward ribs	99
Figure 5-73 Nu ratio versus Re for wire-coiled insert (WCI) fitted with various outward ribs	99
Figure 5-74 Friction factor (f) versus Re for wire-coiled insert (WCI) fitted with various outward	ı
ribs	00
Figure 5-75 Friction factor ratio versus Re for wire-coiled insert (WCI) fitted with various	
outward ribs	01
Figure 5-76 PEC versus Re for circular wire-coiled insert (WCI) fitted with various inward ribs. 1	02
Figure 5-77 PEC versus Re for circular wire-coiled insert (WCI) fitted with various outward ribs.	
	03
Figure 5-78 Average/Maximum PEC for circular wire-coiled insert (WCI) fitted with various ribs	
Figure 5-79 Contour plots of TKE across the longitudinal plane at Re = 10,000 for (a) Smooth	
tube (b) Smooth tube fitted with WCI	
Figure 5-80 Contour plots of TKE at axial plane 0.0865 m at Re = 10,000 for (a) Smooth tube (b))
Smooth tube fitted with WCI	06
Figure 5-81 Contour plots of TKE across the longitudinal plane at Re = 10,000 for inward	
corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal 1	06

Figure 5-82 Closed-view for contour plots of TKE across the longitudinal plane at Re = 10,000 for inward corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d)
Trapezoidal
Figure 5-83 Contour plots of TKE at axial plane 0.0865 m at Re = 10,000 for inward corrugated
tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal
Figure 5-84 Contour plots of TKE across the longitudinal plane at Re = 10,000 for outward
corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal 108
Figure 5-85 Closed-view for contour plots of TKE across the longitudinal plane at Re = 10,000 for
outward corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d)
Trapezoidal
Figure 5-86 Contour plots of TKE at axial plane 0.0865 m at Re = 10,000 for outward corrugated
tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal
Figure 5-87 Contour plots of velocity across the longitudinal plane at Re = 10,000 for (a) Smooth
tube (b) Smooth tube fitted with WCI
Figure 5-88 Closed-view of velocity contours across the longitudinal plane at Re = 10,000 for (a)
Smooth tube (b) Smooth tube fitted with WCI
Figure 5-89 Closed-view of velocity stream lines across the longitudinal plane at Re = 10,000 for
(a) Smooth tube (b) Smooth tube fitted with WCI
Figure 5-90 Velocity vectors at axial plane 0.0865 m at Re = 10,000 for (a) Smooth tube (b)
Smooth tube fitted with WCI
Figure 5-91 Contour plots of velocity across the longitudinal plane at Re = 10,000 for inward
corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal 112
Figure 5-92 Closed-view of velocity contours across the longitudinal plane at Re = 10,000 for
inward corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d)
Trapezoidal
Figure 5-93 Closed-view of velocity stream lines across the longitudinal plane at Re = 10,000 for
inward corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d)
Trapezoidal
Figure 5-94 Velocity vectors at axial plane 0.0865 m at Re = 10,000 for inward corrugated tubes
fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal
Figure 5-95 Contour plots of velocity across the longitudinal plane at Re = 10,000 for outward
corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal 114
Figure 5-96 Closed-view of velocity contours across the longitudinal plane at Re = 10,000 for
outward corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d)
Trapezoidal
Figure 5-97 Closed-view of velocity stream lines across the longitudinal plane at Re = 10,000 for
outward corrugated tubes fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d)
Trapezoidal
Figure 5-98 Velocity vectors at axial plane 0.0865 m at Re = 10,000 for outward corrugated tubes
fitted with WCI (a) Curved (b) Triangular (c) Rectangular (d) Trapezoidal
Figure 5-99 Contour plots of temperature across the longitudinal plane at Re = 10,000 for (a)
Smooth tube (b) Smooth tube fitted with WCI
Figure 5-100 Closed-view of temperature contours across the longitudinal plane at Re = 10,000
for (a) Smooth tube (b) Smooth tube fitted with WCI
Tot (a) strioger tabe (b) strioger tabe recea with Wel