

Ain Shams University

Faculty of Engineering Mechanical Power Engineering Department

Investigation of Energy-Efficient Alternatives for Commercial Buildings in Egypt

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering (Mechanical Power Engineering)

Ву

Fady Emil Mikhael Youssef

Master of Science in Mechanical Engineering

(Mechanical Power Engineering)

Faculty of Engineering, Ain Shams University, November 2018

Supervised by

Prof. Nabil Abdel Aziz Mahmoud Prof. Ahmed Mohamed Reda El Baz Dr. Aya Khairy Diab

Cairo - (2018)

Ain Shams University

Faculty of Engineering Mechanical Power Engineering Department

Investigation of Energy-Efficient Alternatives for Commercial Buildings in Egypt

Ву

Fady Emil Mikhael Youssef

M. Sc. in Mechanical Power Engineering Department
Faculty of Engineering – Ain Shams University

EXAMINERS COMMITTEE

Name and Affiliation	Signature
1. Prof. Dr. Salah M. El Haggar	
Department of Mechanical Engineering	
American University in Cairo.	
2. Prof. Dr. Raouf Nassif Abdel-Messih	
Department of Mechanical Power Engineering	
Ain Shams University, Faculty of Engineering	
3. Prof. Dr. Nabil Abdel Aziz Mahmoud	
Department of Mechanical Power Engineering	
Ain Shams University, Faculty of Engineering	
4. Prof. Dr. Ahmed Mohamed Reda El Baz	
Department of Mechanical Power Engineering	
Ain Shams University, Faculty of Engineering	

Date: 24/11/2018

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering (Mechanical Power Engineering), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signature

Student Name

Fady Emil Mikhael Youssef

Date: 24/11/2018

Researcher Data

Name Fady Emil Mikhael Youssef

Date of birth 04/06/1987

Place of birth Cairo, Egypt

Last academic degree Bachelor of Science.

Field of specialization Mechanical Power Engineering

University issued the degree Ain Shams University

Date of issued degree June 2010

Current job Senior Mechanical Design Engineer

List of Publications

Twelfth International Conference of Fluid Dynamics (ICFD12) 19-20 December 2016, Le Méridien

Pyramids Hotel, Cairo, EGYPT

Paper No.: ICFD12-EG-5020

Paper Title: "Investigation of the Impact of Using Daylighting for Rationalization of Energy

Consumption of an Office Building in Egypt"

Abstract

Given the rising living standard, population growth and global warming, buildings have been consuming energy and resources at an ever-increasing rate worldwide. To face this problem, energy saving techniques have been recently adopted in the framework of high-performance buildings, also known as zero-energy buildings. In Egypt, electricity consumption has witnessed significant increase of 55.22% since 2006 [1] of which residential and commercial buildings have the biggest share (66% to 74%). Hence, it is timely for Egypt to adopt energy saving techniques in its building construction code. This thesis investigates the effects of applying energy saving techniques for commercial buildings in Egypt. As a case study, a virtual building based on the Mechanical Engineering Department building at the Faculty of Engineering Campus of Ain Shams University, was modeled using EnergyPlus as a sample of non-residential buildings. A number of energy saving techniques have been assessed and compared to reach an improved building envelop and improved HVAC system with minimum energy needs (energy rationalization). Subsequently, a solar system is sized to cover these energy needs, thus transforming the sample building into a zero-energy building. Results of the study showed that Zero-energy buildings are applicable in Egypt and constructions recommended by international standards can be replaced by cheaper and more effective alternatives. Study also introduced simple design guidelines to achieve the Zero-Energy state for commercial buildings in Egypt.

Key words:

Zero-Energy buildings, High-Performance buildings, Energy saving, Energy conservation, EnergyPlus, Energy simulation

Acknowledgement

I would like to express my deepest appreciation to the committee members for their inspirational instructions. Without their guidance and support, I couldn't have completed this work.

I would like to express my gratitude to my academic advisors, Prof. Nabil Abdel-Aziz, Prof. Ahmed El-Baz, and Dr. Aya Diab for their guidance and motivation during this study.

Finally, I sincerely thank my mother and my family who deserve all the credit for the encouragement in carrying out this work.

Table of Contents

Sta	teme	nt		ii
Res	search	ner D	Pata	.iii
List	of Pu	ublica	ations	.iv
Ab	stract			V
Acl	knowl	edge	ement	vii
Tak	ole of	Cont	tents	viii
List	of Ta	bles		.xi
List	of Fi	gure	S	xii
Ab	brevia	ation	S	xvi
Cha	apter	1: In	troduction	19
Cha	apter	2: Li1	terature Review	25
Cha	apter	3: M	odeling of The Case Study	45
3	3.1.	Mod	deling Procedure	45
3	3.2.	Gen	erating the Building Model	48
3	3.3.	The	Case Study	48
3	3.4.	Buil	ding Description	48
3	3.5.	Ana	lysis Tool	51
Cha	apter	4: Re	esults and Discussion	55
4	l.1.	The	Base Case	55
	4.1.	1.	The Base Case Results	63
4	1.2.	Mod	del Validation	65
4	1.3.	Ene	rgy Rationalization	66
4	1.4.	Buil	ding Envelope Enhancements	69
	4.4.	1.	Roof Alternatives (Cases 1, 2 & 3)	69
	4.4.	2.	Recommended Roof Construction	74
	4.4.	3.	Wall Alternatives (Cases 4, 5 & 6)	77
	4.4.	4	Recommended Wall Construction	81

	4.4.	5.	Glazing Alternatives (Cases 7, 8 &9)	85
	4.4.	6.	Recommended Glazing System	89
	4.5.	Buil	ding Envelope Enhancements Summary	91
	4.6.	Enh	anced Building Constructions (Case 10)	98
	4.7.	Effe	ect of Daylighting (Case 11)	99
	4.8.	Day	lighting with a Shading Device	101
	4.8.	1.	Using Mashrabiya as a Shading Device (Case 12)	101
	4.8.	2.	Using Draperies as a Shading Device (Case 13)	103
	4.8.	3.	Using Overhangs as a Shading Device (Case 14)	105
	4.9.	Wir	ndow-To-Wall Ratio Improvement	108
	4.9.	1.	Improvement of the WWR of the North-West elevation (Case 15)	108
	4.9.	2.	Improvement of the WWR of the South-East elevation (Case 16)	110
	4.9.	3.	Improvement of the WWR of both of the North-West and South-East elevation	ns
	•		')	
			anced Building Envelope	
	4.11.		AC System Enhancements	
	4.12.		rgy Recovery in Ventilation (Case 18)	
	4.13.		Chiller COP (Case 19)	
	4.14.		s Efficiency (Case 20)	
	4.15.	Ind	oor Design Temperature (Case 21)	120
	4.16.	HVA	AC System Enhancements Summary	122
	4.17.	Enh	anced Building Envelope with Enhanced HVAC System (Case 22)	130
	4.18.	Pro	viding Renewable Energy Plant	132
	4.19.	Pro	posed PV system	132
	4.19	9.1.	Solar Panels	132
	4.19	9.2.	Energy Generation against Energy Demand	135
	4.19	9.3.	Energy Storage System	137
	4.20.	Eco	nomical Analysis of the Proposed Techniques	138
	4.21.	Res	ults Summary	140
C	hapter	5: C	onclusions and Recommendations for Future Work	142

5.1.	Conclusions	. 142
5.2.	Recommendations for Future Work	. 144
Referen	ces	. 145
Append	ix A: EnergyPlus	. 149
A.1.	Surface Heat Balance	. 149
A.2.	Glazing Heat Balance	. 150
A.3.	Daylighting Model	. 152
A.4.	Window Screen (Mashrabiya) Model	. 153
A.5.	Green Roof Model	. 157
A.6.	Air Loop and Outdoor Simulation	. 159
A.7.	Air-To-Air Sensible and Latent Heat Exchanger	. 159
A.8.	Photovoltaic Generator Calculations	. 161

List of Tables

Table 1: Electrical Energy Consumption in Egypt; [1]	. 19
Table 2: State-of-the-art themes and related criteria; [7]	. 27
Table 3: Energy Conservation Measures; [9]	. 29
Table 4: Energy Savings by Single Measures; [9]	. 31
Table 5: Base Model Occupancy, Lighting, Equipment, Infiltration and Ventilation Definitions;	;
[33, 34, 35, 36, 37]	. 58
Table 6: System Sizing and Cost Analysis for the Base Case	. 65
Table 7: Description of the Energy Rationalization Steps	. 66
Table 8: Cost Analysis for Proposed Energy-Saving Techniques	139

List of Figures

Figure 1: Electrical Energy Consumption in Egypt; [1]	20
Figure 2: Energy Consumption of Each End Use Category in Egypt; [1]	21
Figure 3: Energy Generated by Renewable Energy Sources in Egypt; [1]	22
Figure 4: Energy Generated by Renewable Energy Sources Share of Energy Consumption	in
Egypt; [1]	22
Figure 5: Old and New Electrical Energy Tariffs in Egypt for Residential Buildings; [1]	23
Figure 6: Old and New Electrical Energy Tariffs in Egypt for Commercial Buildings; [1]	23
Figure 7: Commercial and Public Buildings Energy Use Data Quality; [5]	26
Figure 8: Residential Buildings Energy Use Data Quality; [5]	26
Figure 9: The Three Houses; [9]	29
Figure 10: Energy Saving Potential of Single Measures; [9]	
Figure 11: Typical floor plan of Block 1 in its urban context; [12]	
Figure 12: Typical floor plan of Block 2 in its urban context; [12]	34
Figure 13: Concept of the direct to diffuse light transformation (DDT) function; [18]	37
Figure 14: Potential for solar thermal energy to cover the thermal energy needs, 2050; [1	L9] 39
Figure 15: Potential for solar electric energy to cover the electric energy needs, 2050; [19]	
Figure 16: Solar XXI building BIPV-T system; [24]	
Figure 17: Zero-Energy Building Concept	
Figure 18: Modeling Procedure Chart	
Figure 19: Case Study Building Isometric (North-West Orientation)	
Figure 20: Case Study Building Isometric (South-East Orientation)	
Figure 21: Case Study Building Top View	
Figure 22: EnergyPlus Program Schematic; [32]	
Figure 23: Schematic of Simultaneous Solution Scheme; [32]	
Figure 24: Diagram of Time Step Formulation; [32]	
Figure 25: The Base Case Roof Construction	
Figure 26: The Base Case Wall Construction	
Figure 27: The Base Case Glazing Construction	
Figure 28: The Base Case Walls and Windows Areas	
Figure 29: The Base Case Window-to-Wall Ratio	
Figure 30: People Schedule	
Figure 31: Lights Operation Schedule	
Figure 32: Equipment Operation Schedule	
Figure 33: HVAC System Schematic Diagram	
Figure 34: Annual Energy Consumption Breakdown for The Base Case	
Figure 35: Monthly Energy Consumption for The Base Case	64

Figure 36: Monthly Electricity Bill for The Base Case	64
Figure 37: ASHRAE 90.1 Roof Construction	69
Figure 38: Effect of Applying the ASHRAE 90.1 Roof on the Annual Energy Consumption	70
Figure 39: Roof Construction for the Base Model Roof with Roof Vegetation	71
Figure 40: Effect of Adding Roof Vegetation to the Base Case Roof on the Annual Energy	
Consumption	72
Figure 41: Base Model Roof with Roof Vegetation and 50 mm Roof Insulation Roof Construction	ction
	73
Figure 42: Effect of Adding Roof Vegetation and 50 mm Insulation to the Base Case Roof on	the
Annual Energy Consumption	74
Figure 43: Comparison Between Proposed Roof Construction Alternatives	
Figure 44: ASHRAE 90.1 Wall Construction	
Figure 45: Effect of Applying the ASHRAE 90.1 Wall on the Annual Energy Consumption	78
Figure 46: Effect of Applying the ASHRAE 90.1 Wall with Reflective Coating on the Annual	
Energy Consumption	
Figure 47: Construction for the Base Model Wall with 10 mm Air Gap Wall	80
Figure 48: Effect of Adding 10 mm Air Gap to the Base Case Wall on the Annual Energy	
Consumption	
Figure 49: Comparison Between Proposed Wall Construction Alternatives	
Figure 50: London's "Walkie Talkie" Skyscraper; [41]	
Figure 51: Cars Melt by London's "Walkie Talkie" Skyscraper; [42]	
Figure 52: ASHRAE 90.1 Glazing Construction	
Figure 53: Effect of Applying the ASHRAE 90.1 Glazing on the Annual Energy Consumption.	
Figure 54: Double Glazing Construction	
Figure 55: Effect of Applying Double Clear Glazing on the Annual Energy Consumption	
Figure 56: Triple Glazing Construction	
Figure 57: Effect of Applying Triple Clear Glazing on the Annual Energy Consumption	
Figure 58: Comparison Between Proposed Glazing Alternatives	
Figure 59: % Annual Energy Consumption Saving for Different Building Envelope Enhancem	
Techniques	
Figure 60: % Net Initial Cost Saving for Different Building Envelope Enhancement Technique	
Figure 61: Payback Period for Different Building Envelope Enhancement Techniques	
Figure 62: Design Check Figures for Different Building Envelope Enhancement Techniques .	
Figure 63: Annual Net Figure for Studied Energy Saving Techniques	
Figure 64: Effect of Combining Enhanced Constructions on the Annual Energy Consumption	
Figure 65: Effect of Applying Daylighting on the Annual Energy Consumption	
Figure 66: Triple Glazing with Mashrabiya Construction	
Figure 67: Mashrabiya Specifications	102

Figure 68: Effect of Applying Triple Clear Glazing with Mashrabiya and Daylighting on the	
Annual Energy Consumption	103
Figure 69: Triple Glazing with Drapery Construction	104
Figure 70: Effect of Applying Triple Clear Glazing with Draperies and Daylighting on the An	nual
Energy Consumption	105
Figure 71: Triple Glazing with Overhang (Projection Factor = 0.5) Construction	106
Figure 72: Effect of Applying Triple Clear Glazing with Overhang and Daylighting on the An	nual
Energy Consumption	107
Figure 73: Annual Energy Consumption of the Enhanced-Construction Model with 5% to 4	0%
WWR for the North-West Oriented Elevation (with Daylighting Effect)	108
Figure 74: Effect of Improving Front Elevation WWR for the Enhanced Construction Model	on
the Annual Energy Consumption (with Daylighting Effect)	109
Figure 75: Annual Energy Consumption of the Enhanced-Construction Model with 5% to 4	0%
WWR for the South-East Oriented Elevation (with Daylighting Effect)	110
Figure 76: Effect of Improving Back Elevation WWR for the Enhanced Construction Model	on
the Annual Energy Consumption (with Daylighting Effect)	111
Figure 77: Effect of Improving Front and Back Elevation WWR for the Enhanced Constructi	on
Model on the Annual Energy Consumption (with Daylighting Effect)	112
Figure 78: Air-to-Air Energy Recovery; [45]	114
Figure 79: Thermal Wheel Air-to-Air Energy Recovery; [46]	115
Figure 80: Effect of Providing Ventilation Energy Recovery to the Enhanced Construction N	/lodel
on the Annual Energy Consumption (with Daylighting Effect)	116
Figure 81: Effect of Increasing Chillers COP for the Enhanced Construction Model on the A	nnual
Energy Consumption (with Daylighting Effect)	117
Figure 82: Effect of Increasing Fans' Efficiency for the Enhanced Construction Model on the	
Annual Energy Consumption (with Daylighting Effect)	
Figure 83: Thermostat Setpoints 24 °C and 26 °C versus ASHRAE 55 thermal comfort zone;	
	120
Figure 84: Effect of Increasing Design Temperature to 26 °C for the Enhanced Construction	
Model on the Annual Energy Consumption (with Daylighting Effect)	
Figure 85: %Annual Energy Saving for Different HVAC System Enhancement Techniques	
Figure 86: % Chilled Water Plant Capacity Reduction for Different HVAC System Enhancem	
Techniques	
Figure 87: % Hot Water Plant Capacity Reduction for Different HVAC System Enhancement	
Techniques	
Figure 88: % Initial Cost Savings for Different HVAC System Enhancement Techniques	
Figure 89: Design Check Figures for Different HVAC System Enhancement Techniques	
Figure 90: Annual Net Figure for Studied Energy Saving Techniques	129