



# EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF SMOKE EXTRACTION SYSTEMS IN MOVIE THEATERS

#### By

### Amro Hossam-Eldeen Al-Tohamy Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

**DOCTOR OF PHILOSOPHY** 

in

**Mechanical Power Engineering** 

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

# EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF SMOKE EXTRACTION SYSTEMS IN MOVIE THEATERS

#### By

#### Amro Hossam-Eldeen Al-Tohamy Saleh

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

#### DOCTOR OF PHILOSOPHY

in

**Mechanical Power Engineering** 

Under the Supervision of

#### Prof. Dr. Essam E. Khalil

Professor of Mechanical Engineering Mechanical Engineering department Faculty of Engineering, Cairo University

#### Dr. Walid Abd-ELMAKSOUD

Associate Professor Mechanical Engineering department Faculty of Engineering, Cairo University

#### **Prof. Dr. Samy Mourad Morcos**

Professor of Mechanical Engineering Mechanical Engineering department Faculty of Engineering, Cairo University

#### Dr. Taher Mohamed Abou-Deif

Assistant Professor Mechanical Engineering department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

# EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF SMOKE EXTRACTION SYSTEMS IN MOVIE THEATERS

By

#### Amro Hossam-Eldeen Al-Tohamy Saleh

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

**Mechanical Power Engineering** 

Approved by the **Examining Committee** 

Prof. Dr. Essam E. Khalil (Thesis Main Advisor)

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

**Prof. Dr. Samy Mourad Morcos** (Advisor)

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Mahmoud Ali Hassan (Internal Examiner)

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Mahmoud Abd EL-FATTAH El-Kady (External Examiner)

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

**Engineer's Name:** Amro Hossam-Eldeen Al-Tohamy Saleh

**Date of Birth:** 08 / 03 / 1984 **Nationality:** Egyptian

**E-mail:** eng\_2hamy@hotmail.com

**Phone:** +2 0100 10 79 2 69

Address: 110 B Al-Ahram Gardens, Giza

**Registration Date:** 01/10/2014**Awarding Date:** ..../2018

**Degree:** Doctor of Philosophy

**Department:** Mechanical Power Engineering

**Supervisors:** 

Prof. Dr. Essam E. Khalil Prof. Dr. Samy Mourad Morcos Dr. Walid Abd-ELMAKSOUD Dr. Taher Mohamed Abou-Deif

**Examiners:** 

Prof. Dr. Essam E. Khalil (Thesis Main Advisor)

Prof. Dr. Samy Mourad Morcos (Advisor)

Prof. Dr. Mohamed Mahmoud Ali Hassan (Internal examiner)

Prof. Dr. Mahmoud Abd EL-FATTAH El-Kady (External examiner)

Professor, Mechanical Power Engineering Department,

Faculty of Engineering, Al-Azhar University

#### **Title of Thesis:**

# EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF SMOKE EXTRACTION SYSTEMS IN MOVIE THEATERS

#### **Key Words:**

Fire Dynamics Simulator (FDS); movie theaters fires; nondedicated systems; smoke-control mode; smoke extraction systems.

#### **Summary:**

The ability of the Fire Dynamics Simulator (FDS) to simulate smoke extraction systems and its ability to correctly deduce temperatures at several different locations during the fire is verified through the current experimental work. Also, through the present study the FDS is used to simulate fire development, and to analyze the characteristics of smoke movement in a movie theater hall. Four cases are performed in this study to investigate the behavior of the HVAC systems when make-up air is supplied and smoke is extracted through linear and square vents. Depending on airflow patterns, temperature contours, and concentration of CO and CO<sub>2</sub>, the performance of nondedicated systems is evaluated and compared. The behavior of the HVAC systems has been the main focus in the comparison at normal operation and when it changes to smoke control mode.



#### **DISCLAIMER**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

| Name: Amro Hossam-Eldeen Al-Tohamy Saleh | Date: |
|------------------------------------------|-------|
| Signature:                               |       |

#### **ACKNOWLEDGEMENTS**

First and foremost, I thank **ALLAH**, the most gracious, the ever merciful for helping me finishing this work. Great appreciation, deep thanks and gratitude are due to Prof. Dr. Essam E. Khalil and Prof. Dr. Samy Mourad Morcos for their valuable smooth supervision, deep advices and continuous assistance during the work of present thesis. Also the author wishes to express his sincere thanks and gratitude to Dr. Walid Abd-ELMAKSOUD and Dr. Taher Mohamed Abou-Deif for their constructive criticism, valuable suggestions and guidance during the preparation of this thesis.

Special thanks to Eng. Mohamed Khalaf (Head of HVAC department – SHAKER Consultancy Group) and Eng. Mohamed Desouky (General Manager – Arab Mechanical Engineering Company) for their effective advisory support throughout the design and implementation of the experimental part of present study.

Thanks are extended to include the author's workmates; Dr. Saeid Abou Al-Yazeed, Dr. Ahmed Hussein, Ms. Nancy Ahmed, Eng. Ansam Emad, Eng. Ahmed Fouad and Eng. Mohamed Ibrahim for their kind help during the experimental part of the present investigation.

Last but not least the author wishes to express his sincere appreciation to his parents whose patience and continuous encouragement constituted a major source of inspiration for him.

# **CONTENTS**

|                                                                              | Page |
|------------------------------------------------------------------------------|------|
| DISCLAIMER                                                                   | i    |
| ACKNOWLEDGEMENTS                                                             | ii   |
| CONTENTS                                                                     | iii  |
| LIST OF TABLES                                                               | vi   |
| LIST OF FIGURES                                                              | vii  |
| NOMENCLATURE                                                                 | xiv  |
| ABSTRACT                                                                     | xix  |
| CHAPTER 1: INTRODUCTION                                                      | 1    |
| 1.1 Fire Sources.                                                            | 1    |
| 1.1.1 Identifying sources of ignition                                        | 1    |
| 1.1.2 Identifying sources of fuel                                            | 2    |
| 1.1.3 Identifying sources of oxygen                                          | 3    |
| 1.2 Classification of Fire                                                   | 3    |
| 1.3 Diffusion of Fire                                                        | 4    |
| 1.3.1 Convection.                                                            | 4    |
| 1.3.2 Conduction.                                                            | 4    |
| 1.3.3 Radiation.                                                             | 5    |
| 1.4 A Realistic Overview of Fires in Theaters and Movie theaters             | 5    |
| 1.4.1 Beni Suef cultural palace fire                                         | 5    |
| 1.4.2 Uphaar movie theater fire                                              | 5    |
| 1.4.3 1994 Karamay fire                                                      | 6    |
| 1.4.4 Cinema Statuto fire.                                                   | 6    |
| 1.5 The Fire Dynamics Simulator (FDS)                                        | 7    |
| CHAPTER 2: LITERATURE REVIEW                                                 | 8    |
| 2.1 Using of CFD in Smoke Control in Buildings, Houses and Offices, Cinemas, |      |
| and Supermarkets                                                             | 8    |
| 2.2 Using of CFD in Smoke Control in Train Compartment                       | 17   |

| 2.3 Using of CFD in Evaluating the Performance of Ventilation and Smoke |      |
|-------------------------------------------------------------------------|------|
| Extraction Systems.                                                     | . 18 |
| CHAPTER 3: GOVERNINGEQUATIONS                                           | 40   |
| 3.1 Governing Equations.                                                | . 40 |
| 3.1.1 Mass and species transport                                        | . 40 |
| 3.1.2 Momentum transport.                                               | . 40 |
| 3.1.3 Energy transport.                                                 | . 41 |
| 3.1.4 Equation of state                                                 | . 41 |
| 3.2 Large Eddy Simulation (LES).                                        | . 42 |
| 3.3 Visibility                                                          | . 43 |
| 3.4 Heat release rate                                                   | 43   |
| 3.5 Combustion (Mixture Fraction Model)                                 | 44   |
| 3.5.1 A Single-step reaction with local extinction                      | . 45 |
| 3.6 The Heat Conduction Equation for a Solid                            | 46   |
| 3.6.1 Radiation heat transfer to solids                                 | . 46 |
| 3.6.2 Convective heat transfer to solids                                | . 46 |
| 3.6.3 Specified heat release rate                                       | . 47 |
| CHAPTER 4: EXPERIMENTAL WORK AND VERIFICATION OF FDS                    | . 48 |
| 4.1 Experimental Work of the Present Study                              | . 48 |
| 4.1.1 Experimental setup                                                | . 48 |
| 4.1.2 Description of the experiment                                     | 49   |
| 4.1.3 Experimental error                                                | 50   |
| 4.2 Verification for FDS through the Current Experimental Work          | . 52 |
| 4.2.1 Mathematical model                                                | . 52 |
| 4.2.2 Results and analysis                                              | . 56 |
| 4.3 Verification for FDS while Using the Integrated Parallel Processing |      |
| Technique                                                               | . 59 |
| 4.3.1 Assessment of the comparison between the present study and the    |      |
| numerical study [59] based on the experimental work [58].               | . 60 |

| CHAPTER 5: PERFORMANCE SIMULATION FOR NONDEDICATED         |     |
|------------------------------------------------------------|-----|
| SYSTEMS IN MOVIE THEATERS FIRES                            | 63  |
| 5.1 Model Description, Fire Scenario and Simulation Inputs | 63  |
| 5.2 Description of the Cases.                              | 64  |
| 5.2.1 Description of case # 1                              | 65  |
| 5.2.2 Description of case # 2.                             | 65  |
| 5.2.3 Description of case # 3                              | 66  |
| 5.2.4 Description of case # 4.                             | 66  |
| 5.3 Grid Sensitivity Analysis.                             | 66  |
| CHAPTER 6: RESULTS AND DISCUSSIONS                         | 68  |
| 6.1 FDS Calculations for the Temperature Evolution         | 68  |
| 6.2 FDS Calculations for the HRR Evolution.                | 68  |
| 6.3 FDS Calculations for the Local Velocity Evolution      | 69  |
| 6.4 FDS Calculations for the CO concentration Evolution.   | 71  |
| 6.5 FDS Calculations for the Visibility.                   | 72  |
| 6.6 FDS Calculations for the CO2 concentration Evolution.  | 73  |
| 6.7 Review of Results.                                     | 75  |
| CHAPTER 7: CONCLUSIONS AND SUGGESTED FUTURE WORK           | 85  |
| 7.1 Conclusions.                                           | 85  |
| 7.2 Suggested Future Work.                                 | 85  |
| REFERENCES                                                 | 86  |
| APPENDIX (A): CALIBRATION OF TEMPERATURE SENSORS           | 90  |
| APPENDIX (B): ESTIMATION OF ERROR WITH TEMPERATURE         |     |
| MEASUREMENT                                                | 104 |
| APPENDIX (C): DATA REDUCTION                               | 110 |

# LIST OF TABLES

|           |                                                                                      | Page |
|-----------|--------------------------------------------------------------------------------------|------|
| Table 1.1 | Class of Fire [1]                                                                    | 4    |
| Table 4.1 | The thermal properties of the construction materials for the FDS model [61, 62]      | . 54 |
| Table 5.1 | The thermal properties of the construction materials for the FDS model [61, 62 & 66] |      |
| Table 6.1 | Summary show the discussion of results for various cases at $t = 180 \text{ s}$ .    | 76   |

### LIST OF FIGURES

|             |                                                                                                                                                  | Page |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1.1  | The fire triangle [1]                                                                                                                            | 1    |
| Figure 1.2  | The sources of ignition [1]                                                                                                                      | 2    |
| Figure 1.3  | The label on the oxidizing materials                                                                                                             | 3    |
| Figure 1.4  | The smoke moving through a building [1]                                                                                                          | 4    |
| Figure 1.5  | The fire smoke of Beni Suef cultural palace [2]                                                                                                  | 5    |
| Figure 2.1  | The comparison of the heat release rates acquired from the experiments and the simulations [9]                                                   | 9    |
| Figure 2.2  | The comparison of the temperature variations of thermocouple trees TC7, TC8 and TC9 for the experimental results and the simulation [9]          | 10   |
| Figure 2.3  | The temperatures distribution in the X-direction at $t = 120 \text{ s}$ , $t = 360 \text{ s}$ [10]                                               | 11   |
| Figure 2.4  | The smoke diffusion at different time, a- Exhaust ports are closed, b- Exhaust ports are open at $t=60\ s,t=120\ s$ and $t=360\ s$ [10]          | 12   |
| Figure 2.5  | The course of fire in the 12 <sup>th</sup> second of combustion (side-view and front view); fire and smoke diffusion and temperature slices [11] | 13   |
| Figure 2.6  | The heat release rate (HRR) of fire [11]                                                                                                         | 14   |
| Figure 2.7  | The simulation in the 60 <sup>th</sup> second of fire [11]                                                                                       | 14   |
| Figure 2.8  | The FDS simulated temperature contours, 1 s prior to back door opening [12]                                                                      | 15   |
| Figure 2.9  | The FDS simulated pressure contours, 1 s prior to interior door failure [12]                                                                     | 15   |
| Figure 2.10 | The FDS simulated velocity vectors, 15 s after interior door failure [12]                                                                        | 16   |
| Figure 2.11 | The comparison of the averaged airflow velocity at the bottom opening between the experiment and the simulation for case 4 [14]                  | 16   |
| Figure 2.12 | Relative pressure distribution in the stairwell for different cases [14]                                                                         | 17   |
| Figure 2.13 | The smoke distribution of the middle seat fire at $t = 120 \text{ s}$ [15]                                                                       | 18   |

| Figure 2.14 | The CO concentration field without ventilation system [20]                                                                          | 19 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.15 | The CO concentration field with ventilation system [20]                                                                             | 19 |
| Figure 2.16 | The horizontal profiles of the analytical solution, the test and the CFD results at 8 m and 16 m from the nozzle in a car park [24] | 20 |
| Figure 2.17 | The heat release rate for a single car fire [25]                                                                                    | 21 |
| Figure 2.18 | The contours of temperature at t = 300 seconds [26]                                                                                 | 22 |
| Figure 2.19 | The contours of temperature at $t = 480$ seconds [26]                                                                               | 22 |
| Figure 2.20 | The contours of temperature at $t = 600$ seconds [26]                                                                               | 22 |
| Figure 2.21 | The temperature contours and the velocity vectors for the 30 kW fire [27]                                                           | 23 |
| Figure 2.22 | The velocity magnitude at different distances from the jet fan outlet [28]                                                          | 23 |
| Figure 2.23 | The horizontal profiles of the analytical solution and the CFD results at 8 m, 16 m and 24 m from the nozzle in a car park [31]     | 24 |
| Figure 2.24 | Schematic drawing for simulation space [37]                                                                                         | 26 |
| Figure 2.25 | Deviation percentage of vent velocity between measurement and theoretic value [38]                                                  | 27 |
| Figure 2.26 | The coordinate system and the geometry model [38]                                                                                   | 28 |
| Figure 2.27 | The smoke distribution contour at $t = 300$ seconds [38]                                                                            | 28 |
| Figure 2.28 | The heat release rate for a single car fire [40]                                                                                    | 29 |
| Figure 2.29 | Schematic drawing for the natural smoke extraction system in the exhibition hall on the second floor [44]                           | 31 |
| Figure 2.30 | The cross-sectional visibility chart for the first floor at $t = 7000$ seconds after the fire broke out [44]                        | 32 |
| Figure 2.31 | The cross-sectional visibility chart for the second floor at $t = 664$ seconds after the fire broke out [44]                        | 32 |
| Figure 3.1  | Oxygen-temperature phase space [57]                                                                                                 | 44 |
| Figure 4.1  | Schematic drawing with dimensions for the test compartment used in the current experimental work                                    | 49 |

| Figure 4.2  | Photograph for one of the slot linear diffusers mounted on ceiling                                                                            | 50 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.3  | Schematic drawing for the axial fans and the isolated sheet-<br>metal ducts used in the current experimental work                             | 51 |
| Figure 4.4  | Schematic drawing showing the flow direction for both fresh air and smoke.                                                                    | 52 |
| Figure 4.5  | Photograph for the test compartment from inside the Higher Technological Institute.                                                           | 53 |
| Figure 4.6  | Photograph for the temperature sensors installed within the test compartment.                                                                 | 53 |
| Figure 4.7  | Schematic drawing showing the distribution of temperature sensors within the test compartment at an altitude of 85 cm from the concrete floor | 54 |
| Figure 4.8  | Photograph for the Arduino data acquisition device equipped with laptop for processing, visualizing, and storing of temperature measurements  | 55 |
| Figure 4.9  | Schematic drawing showing the position of the fire source within the test compartment                                                         | 55 |
| Figure 4.10 | Photograph for the burning of the chopped paper during the experiment.                                                                        | 56 |
| Figure 4.11 | Schematic drawing with scale 1:1 for the mathematical model carried out using the FDS to simulate the current experimental work               | 57 |
| Figure 4.12 | Variation of temperature with time obtained from the grid sensitivity analysis and the current experimental work for TS 01                    | 57 |
| Figure 4.13 | Variation of temperature with time obtained from the grid sensitivity analysis and the current experimental work for TS 02                    | 58 |
| Figure 4.14 | Variation of temperature with time obtained from the grid sensitivity analysis and the current experimental work for TS 03                    | 58 |
| Figure 4.15 | Variation of temperature with time obtained from the grid sensitivity analysis and the current experimental work for TS 04                    | 59 |
| Figure 4.16 | Variation of temperature with time obtained from the grid sensitivity analysis and the current experimental work for TS 05                    | 59 |

| Figure 4.17 | Variation of temperature with time obtained from the grid sensitivity analysis and the current experimental work for TS 06                                                    | 60 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.18 | Schematic drawing with scale 1:1 showing the multiple meshes used for the mathematical model carried out using the FDS to simulate the experimental work [58]                 | 61 |
| Figure 4.19 | Comparison for the readings of the ceiling-mounted thermocouples (TC) presented by the experimental work [58] and the present study                                           | 61 |
| Figure 4.20 | Comparison for the readings of the ceiling-mounted thermocouples (TC) presented by the experimental work [58] and the numerical study [59]                                    | 62 |
| Figure 5.1  | Schematic drawing with scale 1:1 carried out using the FDS, showing the distribution for supply and return slot linear diffusers and smoke detectors inside the movie theater | 64 |
| Figure 5.2  | Schematic drawing with scale 1:1 carried out using the FDS, showing the distribution for supply and return square diffusers and smoke detectors inside the movie theater      | 65 |
| Figure 5.3  | FDS calculations for the evolution of the temperature for case $\#$ 1 at the entry door (Z = 3.65 m) when as different number of cells.                                       | 66 |
| Figure 5.4  | FDS calculations for the evolution of the local velocity (v-velocity) for case # 1 at the entry door ( $Z = 3.65$ m) as using different number of cells                       | 67 |
| Figure 6.1  | FDS calculations for the evolution of the temperature at $Z = 2.00$ m & $Z = 3.65$ m for case # 1                                                                             | 68 |
| Figure 6.2  | FDS calculations for the evolution of the temperature at $Z = 2.00$ m & $Z = 3.65$ m for case # 2                                                                             | 69 |
| Figure 6.3  | FDS calculations for the evolution of the temperature at $Z = 2.00$ m & $Z = 3.65$ m for case # 3                                                                             | 69 |
| Figure 6.4  | FDS calculations for the evolution of the temperature at $Z = 2.00$ m & $Z = 3.65$ m for case # 4                                                                             | 70 |
| Figure 6.5  | The heat release rate results for case # 1                                                                                                                                    | 70 |
| Figure 6.6  | The heat release rate results for case # 2                                                                                                                                    | 71 |
| Figure 6.7  | The heat release rate results for case # 3                                                                                                                                    | 71 |
| Figure 6.8  | The heat release rate results for case # 4                                                                                                                                    | 72 |

| Figure 6.9  | FDS calculations for the evolution of the local velocity at $Z = 2.00$ m & $Z = 3.65$ m for case # 1   | 72 |
|-------------|--------------------------------------------------------------------------------------------------------|----|
| Figure 6.10 | FDS calculations for the evolution of the local velocity at $Z = 2.00$ m & $Z = 3.65$ m for case # 2   | 73 |
| Figure 6.11 | FDS calculations for the evolution of the local velocity at $Z = 2.00$ m & $Z = 3.65$ m for case # 3   | 73 |
| Figure 6.12 | FDS calculations for the evolution of the local velocity at $Z = 2.00$ m & $Z = 3.65$ m for case # 4   | 74 |
| Figure 6.13 | FDS calculations for the evolution of the CO concentration at $Z = 2.00$ m & $Z = 3.65$ m for case # 1 | 74 |
| Figure 6.14 | FDS calculations for the evolution of the CO concentration at $Z = 2.00$ m & $Z = 3.65$ m for case # 2 | 75 |
| Figure 6.15 | FDS calculations for the evolution of the CO concentration at $Z = 2.00$ m & $Z = 3.65$ m for case # 3 | 75 |
| Figure 6.16 | FDS calculations for the evolution of the CO concentration at $Z = 2.00$ m & $Z = 3.65$ m for case # 4 | 76 |
| Figure 6.17 | The visibility contours at $Z = 2.00$ m for case # 1 at $t = 180$ seconds                              | 76 |
| Figure 6.18 | The visibility contours at $Z = 2.00$ m for case # 2 at $t = 180$ seconds                              | 77 |
| Figure 6.19 | The visibility contours at $Z = 2.00$ m for case # 3 at $t = 180$ seconds                              | 77 |
| Figure 6.20 | The visibility contours at $Z = 2.00$ m for case # 4 at $t = 180$ seconds                              | 78 |
| Figure 6.21 | The visibility contours at $Z = 3.65$ m for case # 1 at $t = 180$ seconds                              | 78 |
| Figure 6.22 | The visibility contours at $Z = 3.65$ m for case # 2 at $t = 180$ seconds                              | 79 |
| Figure 6.23 | The visibility contours at $Z = 3.65$ m for case # 3 at $t = 180$ seconds                              | 79 |
| Figure 6.24 | The visibility contours at $Z = 3.65$ m for case # 4 at $t = 180$ seconds                              | 80 |
| Figure 6.25 | The $CO_2$ concentration contours at $Z=2.00$ m for case # 1 at $t=180$ seconds.                       | 80 |
| Figure 6.26 | The $CO_2$ concentration contours at $Z=2.00$ m for case # 2 at $t=180$ seconds.                       | 81 |
| Figure 6.27 | The CO <sub>2</sub> concentration contours at $Z = 2.00$ m for case # 3 at $t = 180$ seconds.          | 81 |