

Ain Shams University Faculty of Pharmacy Department of Microbiology and Immunology

A comparative study between pyrogen and limulus amebocyte lysate-dependent(LAL) tests for determination of endotoxin level in some biological products

A thesis

Submitted in Partial Fulfillment of the Requirements for the

Master's Degree

In

Pharmaceutical Sciences

(Microbiology and Immunology)

By

Mohammed Ahmed Abdelrahman A. Elkhateeb

Bachelor of Pharmaceutical Sciences, 2008

2018

Ain Shams University Faculty of Pharmacy Department of Microbiology and Immunology

A comparative study between pyrogen and limulus amebocyte lysate-dependant(LAL) tests for determination of endotoxin level in some biological products

A thesis

Submitted in Partial Fulfillment of the Requirements for the

Master's Degree

In

Pharmaceutical Sciences (Microbiology and Immunology)

By

Mohammed Ahmed Abdelrahman A. Elkhateeb

Bachelor of Pharmaceutical Sciences, 2008

Under Supervision of

Prof. Dr. Mohammad Mabrouk Aboulwafa

Professor and Head of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Walid Faisal Ahmed Elkhatib

Professor of Microbiology and Immunology department, Faculty of Pharmacy, Ain Shams University

ABSTRACT

INTRODUCTION

LITERATURE REVIEW

MATERIALS AND METHODS

RESULTS

DISCUSSION

SUMMARY

REFERENCES

ARABIC SUMMARY

Contents

Title	page
Introduction	1
Literature review	7
1. Biological	7
2. Gram-negative bacterial cell wall as a source of endotoxin	7
3. Endotoxin	9
3.1. Ubiquity of Endotoxin	10
3.2. Pyrogenicity of Endotoxin	12
3.3. Endotoxin stability	13
3.4. Endotoxin quantification	15
4. Methods of endotoxin detection	17
4.1. Limulus Amebocyte Lysate (LAL)	17
4.1.1. LAL test methods	21
4.1.1.1. Gel-clot technique	22
4.1.1.2. Turbidimetric technique	23
4.1.1.3. Chromogenic technique	24
4.1.2. LAL test applications	25
4.2. Rabbit pyrogen test (RPT)	26
4.2.1. Factors influencing RPT	27
4.2.1.1. Nature of the Test Sample	27

Title	pag
4.2.1.2. Tolerance	27
4.2.1.3. Length of rabbit use	30
4.2.2. Limitations of RPT	31
4.3. Monocyte activation test	32
4.4. Endpoint fluorescent microplate assay	35
Material and Methods	36
1. Experimental animals	36
2. Chemicals, solutions and reagents	36
2.1. 70% alcohol	36
2.2. Sodium hydroxide (0.1 N) and HCl (0.1 N)	37
2.3. Saline solution (0. 9% NaCl)	37
2.4. LAL reagent water	37
2.5. Endotoxin standard solution	37
2.6. LAL Reagent	38
3. Equipment	38
4. Validation of analysis techniques (LAL test and RPT)	41
used for evaluation of endotoxin level in some biological	
products.	
4.1. Validation of LAL test by gel-clot technique	41
4.1.1. Validation of sample testing dilution	42
4.1.2. Confirmation of the labeled lysate sensitivity(λ)	43

Title	pag
4.1.3. Test for absence of product interference Procedure	46
4.2. Validation of RPT	47
5. Determination of endotoxin level in some biological	48
products by LAL and rabbit pyrogen tests.	
5.1. Determination of endotoxin level by LAL test	48
5.2. Detection and evaluation of pyrogenicity by RPT	52
5.2.1. Animals manipulation and conditioning	52
5.2.2. Testing conditions for preliminary and main tests	52
5.2.3. Preliminary test	54
5.2.4. Main test	54
5.2.4.1. Test animals	54
5.2.4.2. Test procedure	54
5.2.4.3. Validity criteria	60
5.2.4.4. Interpretation of results	60
6. Studying the effect of labeled versus calculated lysate	60
sensitivity (λ) on MVD determination and its impact on	
the test result.	
7. Studying the effect of labeled versus calculated lysate	64
sensitivity (λ) on MVD determination and its impact on the	h(
test result.	