

IMPROVEMENT OF THERMAL ENERGY EFFICIENCY OF OFFICE BUILDINGS BY INTEGRATION OF PASSIVE AND ACTIVE TECHNIQUES

By

Eng. Ahmed Mohamed Ahmed Abbady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

IMPROVEMENT OF THERMAL ENERGY EFFICIENCY OF OFFICE BUILDINGS BY INTEGRATION OF PASSIVE AND ACTIVE TECHNIQUES

By **Eng. Ahmed Mohamed Ahmed Abbady**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Mahmoud A. Fouad

Prof. Dr. Adel Khalil Hassan

Professor of Mechanical Power Engineering Professor of Mechanical Power Engineering

Mechanical Power Engineering
Department
Faculty of Engineering, Cairo University

Mechanical Power Engineering
Department
Faculty of Engineering, Cairo University

IMPROVEMENT OF THERMAL ENERGY EFFICIENCY OF OFFICE BUILDINGS BY INTEGRATION OF PASSIVE AND ACTIVE TECHNIQUES

By **Eng. Ahmed Mohamed Ahmed Abbady**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Mahmoud Ahmed Fouad, Thesis Main Advisor

Prof. Dr. Mostafa Abd El-Hameed Rizk, Internal Examiner

Prof. Dr. Mahmoud Abd El-Fattah El-Kady, External Examiner

Professor of Energy and Environment at Faculty of Engineering - Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer's Name: Ahmed Mohamed Ahmed Abbady

Date of Birth: 1/3/1989 **Nationality:** Egyptian

E-mail: Ahmed_100xp@yahoo.com

Phone: (+20) 01009343757- 01116898074 **Address:** Abu-Sweer, Al-Ismailia, Egypt

Registration Date: 1/10/2013 **Awarding Date:** / / 2019

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors:

Prof. Dr. Mahmoud Ahmed Fouad Prof. Dr. Adel Khalil Hassan

Prof. Dr. Mahmoud Abd El-Fattah El-Kady (External

examiner)

Professor of Energy and Environment at Faculty of Engineering -

Al-Azhar University

Prof. Dr. Mostafa Abd El-Hameed Rizk (Internal examiner) Prof. Dr. Mahmoud Ahmed Fouad (Thesis main advisor)

Title of Thesis:

Improvement of thermal energy efficiency of office buildings by integration of passive and active techniques

Key Words:

Energy Savings; Energy Efficiency; Energy in Buildings; Administrative Buildings; Low Energy Buildings.

Summary:

Egypt expands in building of new energy efficient buildings especially non-residential buildings such as commercial buildings and office buildings, where energy saving is very important to face the lack of energy availability and cost in Egypt. This research presents a framework for using simulation-based optimization approach to improve the thermal performance and reducing primary energy consumption from a HVAC and lightening systems in office buildings by studying an administrative office building as a case study. This case study building is located in Smart Village (West of Cairo) which is considered as one of the biggest administrative and IT office compounds in Egypt, also is likely to be a replicated model in the future to become a group of smart villages or administrative areas in Egypt soon.

The research investigates the influence of integration of passive and active options and their alternatives to achieve energy efficient performance of the building, where the passive options are the options that related to design of building construction fabric, building layout, and climate of a region. While the active options are the options related by the use of mechanical and electrical systems required to run the building.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Mohamed Ahmed Abbady	Date:
Signature:	

ACKNOWLEDGMENT

I am heartily thankful to my parents, who always support me and especially to accomplish this work and;

I take this opportunity to express my gratitude and heartily thankful to Professor Dr. Mahmoud Fouad, the main advisor of this work, whose encouragement, supervision and support from the preliminary to the concluding level enabled me to develop an understanding of the subject despite the obstacles we had to face throughout this work.

Also, I want to express my heartily thankful to my supervisor Professor Dr. Adel Khalil Hassan for the insights he has shared and for his dedication, keen interest, encouragement, and relentless support throughout finishing this work.

I also offer my regards and blessings to Dr. Mahmoud Abd El-Razik the researcher in HBRC who helped me to get all support from the HBRC to simulate the case study of this research.

I also want to thank and offer my regards to Engineer. Mohamed Hassanien the maintenance manager of the Smart Village Co. who facilitated to me all information have been used to complete this work.

I also offer my best regards to Professor Dr. Ali Ali Abd El-Aziz and Professor Dr. Nabil Melad Gergess who supported me to complete this work.

Last but not the least I want to thank Dr. El-Awady Attia who helped me in the economical part of this research.

Finally, I offer my regards and my respectful to the Smart Villages Administration Company for their support finishing this work.

TABLE OF CONTENTS

LIST OF TABLES	S	VII
LIST OF FIGURE	S	VIII
LIST OF SYMBO	LS	XIII
LIST OF ABBRE	VIATIONS	XV
ABSTRACT		.XVII
Chapter 1		1
1 Introduction		1
1.1. General I	Research Objectives	3
1.2. The Thes	is Structure	3
Chapter 2		5
2. Literature Rev	view	5
2.1. Introduct	ion	5
2.2. Passive C	Options	5
2.3. Active O	ptions	7
2.4. Users Be	havior and Energy Management Options	8
2.5. Capabilit	y of Using Simulation to improve Building Performance	9
Chapter 3		11
3. Theory of the	Buildings Energy Calculations	11
3.1. General		11
3.2. Theory of	f the Energy Calculation Concepts	13
3.2.1. Appr	roaches to Modeling	13
3.2.2. Ener	gy Calculations Models	13
3.3. Overview	of Simulation Program Modules and Capabilities	20
Chapter 4		23
4. Simulation Pr	ogram Verification and Base Case Calibration	23
4.1. Simulation	on Program Verification	23
	I measurements of electric energy consumption s for the I study:	
4.1.2. Desi	gnBuilder results	26
4.1.3. Anal	ysis and judgement	27
4.2. Calibratio	on of the case study building model	28
4.2.1. Deta	iled description of the case study building model	28
4.2.2. Data	entry technique used to model the building	33
4.2.3. Simu	ulation Results of the Base Case	45
4.2.4. Base	case calibration using actual cooling load and electricity bills	50
4.2.5. Build	ding performance in different site weathers within Egypt	55

C	hapte	r 5		63
5.	RE	SULT	TS	63
	5.1.	Buil	ding orientation Effect	63
	5.2.	Win	dows to wall ratio effect	66
	5.3.	Win	dows Glazing Type of the Building	71
	5.3.	1.	Windows Glazing Heat Gain contributions of the building	71
	5.3.	2.	Glazing Properties	71
	5.3.	3.	Glazing alternatives simulation and assessment	73
	5.3.	4.	Glazing alternatives life cycle cost benefit and economic analysis	77
	5.4.	Roo	f and Walls insulator	84
	5.4.	1.	Base case modeling	84
	5.4.	2.	Insulation at different thicknesses simulation and assessment	87
	5.4. app	3. roach	Optimum insulation thickness estimation using the economic feasile 192	oility
	5.5.	Shac	ding Devices Effect	100
	5.5.	1.	Base case without shading devices	100
	5.5.	2.	Base case with the customized local shading device	101
	5.5.	3.	Louvres local shading devices	102
	5.5.	4.	Overhangs shading devices	103
	5.5.	5.	Overhangs in conjunction with Side fins shading devices	104
	5.5.	6.	Simulation results of different local shading devices assessment	105
	5.6.	Holi	stic case	112
C	hapte	r 6		117
6.	DIS	CUS	SION AND CONCLUSION	117
7.	RE	FERE	ENCES	121
8.	AP	PIND	ICES	125
	Apper	ndix A	A : Climatic conditions in Cairo[16]	125
	Apper	ndix I	B : Recommended Indoor Light Levels in LUX [37]	126
	Apper	ndix (C :Daylight charts of different types of shading devices	127
	Appei			ation
	Apper			
	Appei	ndix (G :HBRC building modeling in simulation programs	.133

LIST OF TABLES

Table 1.1: Total consumed Energy on All Voltages Classified According to Uses (GWh)
[5]2
Table 4.2: Simulation results of monthly electric energy consumption compared by the
field measurements
Table 4.2: General characteristics of Microsoft Headquarter Building30
Table 4.4: Occupancy Schedule's Profiles over the year
Table 4.5: HVAC Schedule's Profiles over the year
Table 4.6: The lightening internal loads in the case study building44
Table 4.7: Appliances and equipment presented in the case study building44
Table 4.8: monthly electric energy consumption bills and the building actual monthly
cooling load50
Table 4.9: the simulation results of the monthly electric energy consumption s and the
monthly total cooling load50
Table 4.10: The simulated monthly electric energy consumption s compared by the
monthly electric energy consumption bills
Table 4.11: The simulated monthly total cooling load compared by the actual monthly
total cooling load53
Table 5.1: The annually solar gain and annually total cooling demand of the building at
different orientations w.r.t the geographic north direction64
Table 5.2: Stepped Lighting Control System with Three Steps [36]67
Table 5.3: Lightening system modeling characteristics
Table 5.4: Economic feasibility of lightening system installation70
Table 5.5: The optical and thermal properties of the assessed glazing types74
Table 5.6: Optical and thermal properties for the layers of SGG REFLECTASOL glazing
type
Table 5.7: the simulation results of the assessed glazing types80
Table 5.8: the investment feasibility of the 5 types of assessed Glazing82
Table 5.9: Economic feasibility study of the roof insulation at different thicknesses93
Table 5.10: The investment feasibility of the assessed walls insulation at different
thicknesses95
Table 5.11: The investment feasibility of the assessed walls insulation at different
thicknesses (continue)96
Table 5.12: Shading devices combination
Table 8.1: Estimated cost of lightening control system