

MODELING HYDRAULIC FRACTURING OF DEEP SHALE GAS RESERVOIRS AT HPHT CONDITIONS

By

Mario Emad Saad Abdelmalek

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Petroleum Engineering

MODELING HYDRAULIC FRACTURING OF DEEP SHALE GAS RESERVOIRS AT HPHT CONDITIONS

By Mario Emad Saad Abdelmalek

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Abdel-Alim Hashim Elsayed

-Professor of Petroleum Engineering -Department of Mining, Petroleum and Metallurgy -Faculty of Engineering, Cairo University

Asst.Prof. Dr. Abdulaziz Mohamed Abdulaziz

-Assistant Professor of Petroleum
Engineering
-Department of Mining, Petroleum and
Metallurgy
-Faculty of Engineering, Cairo University

MODELING HYDRAULIC FRACTURING OF DEEP SHALE GAS RESERVOIRS AT HPHT CONDITIONS

By Mario Emad Saad Abdelmalek

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Petroleum Engineering

The Examining Committee:

Prof. Dr. Abdel-Alim Hashim El-Sayed, Thesis Main Advisor

Asst.Prof. Dr. Abdulaziz Mohamed Abdulaziz, Advisor

Prof. Dr. Fouad Khalaf Mohamed, Internal Examiner

Eng. Mohamed Mahmoud Baydoon, External Examiner

-Chairman of Petrozeit Petroleum Company

Engineer's Name: Mario Emad Saad Abdelmalek

Date of Birth: 19th, October. 1991

Nationality: Egyptian

E-mail: marioemad64@gmail.com

Phone: +201287355295

Address: Abohenes, Elborgaya, Menia,

Menia, Egypt

Registration Date: 01/10/2015
Awarding Date:/2019
Degree: Master of Science
Department: Petroleum Engineering

Supervisors: Prof. Dr. Abdel-Alim Hashim Elsayed (Thesis Main advisor)

Prof. Dr. Abdulaziz Mohamed Abdulaziz (Advisor)

Examiners: Prof. Dr. Abdel-Alim Hashim Elsayed (Thesis Main advisor)

Asst.Prof. Dr. Abdulaziz Mohamed Abdulaziz (Advisor)

Prof. Dr. Fouad Khalaf Mohamed (Internal Examiner)

Eng. Mohamed Mahmoud Baydoon (External Examiner)

-Chairman of Petrozeit Petroleum Company

Title of Thesis:

Modeling Hydraulic Fracturing of Deep Shale Gas Reservoirs at HPHT Conditions

Key Words:

Hydraulic Fracturing; Shale Gas Reservoirs, Modeling; Deep; HPHT.

Summary:

A hydraulic fracturing model of shale gas reservoirs at deep HPHT conditions was built and adapted using programming codes and interface run by Visual Basic program which gives figures in Excel sheets. The model based on equations representing the effect of HPHT reservoir conditions on shale geomechanical properties and pressure losses in the tubing string for calculating fractures' dimensions and networks distribution. The design is based on tubing geometry, slurry properties, formation geomechanical properties under HPHT conditions and also on intensity of shale gas networks. Comparison to other models showed that when pressure losses inside long tubing reaching deep reservoirs and the effect of HPHT are taken into account, more accurate values for slurry pumped and future gas production are estimated from shale gas and less damage to surrounding formation is obtained. Finally, the effect of each factor on model results was discussed in detail.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name : Mario Emad Saad Abdelmalek Date : 17th November, 2018

Signature: Mario Emad Saad Abdelmalek

DEDICATION

This thesis is dedicated to my mother, Fayza Hakim Wahba. Without her support, I would not have been able to finish this work in my life time. So, I owe this thesis to her. She is the main reason why I have a master degree of petroleum engineering. Also, the thesis is dedicated to my father, Emad Saad who is the main reason why I have a bachelor degree of petroleum engineering.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my main supervisor, Prof. Dr. Abdel-Alim Hashim El-Sayed. He always kept his office door open whenever I ran into trouble or had any question about my research or writing. He gave me the freedom and knowledge to make this research become my own work while providing guidance and support whenever he thought I needed. Also, I am so grateful to the thesis assistant advisor, Asst. Prof. Dr. Abdulaziz Mohamed Abdulaziz for his great support and encouragement that made the thesis finishing easier.

TABLE OF CONTENTS

DISCLAIMER	- 1
DEDICATION	II
ACHNOWLEDGMENTS	Ш
TABLE OF CONTENTS	IV
LIST OF TABLES.	VII
LIST OF FIGURES.	VIII
NOMENCLATURE	
ABSTRACT	XII
CHAPTER 1 : INTRODUCTION	1
1.1 Statement of The Problem	1
1.2 Study Objectives.	2
1.3 Thesis Structure	2
CHAPTER 2 : LITERATURE REVIEW	4
2.1 Standard Hydraulic Fracturing Operation.	4
2.2 Deep Shale Gas Reservoirs at HPHT Conditions	5
2.2.1 The effect of HPHT on shale geomechanical properties	7
2.3 Models to Be Adapted.	8
2.3.1 Partially decoupled model.	11
2.3.2 Hydrodynamic model	14
2.3.3 Pad optimization model	18
2.3.4 Integration of discrete fracture network model	29
2.3.5 Dual porosity model	22
2.3.6 Smeared model	24
2.3.7 PKN and KGD models	24
2.4 Direction of Fractures Networks.	28
2.5 Hydraulic Fracturing Fluid Used for Fracturing of Deep Shale Gas	
Reservoirs at HPHT Conditions	28
CHAPTER 3: RESEARCH METHODOLOGY	30
3.1 Model Assumptions	30

3.2 Tubular Pressure Losses Calculations	32
3.2.1 Gel calculations.	32
3.2.2 Slurry calculations	34
3.2.3 Fracturing pressure calculations	35
3.2.4 Fracture width calculations	35
3.3 Ideal Average Fracture Width Calculations	35
3.4 Average Optimum Fracture Width Calculations	36
3.5 Average Optimum Fracture Height Calculations	37
3.6 Maximum Fracture Half Length Calculations	37
3.7 Shale Gas Production Equations	38
3.8 Computer Model Description	40
CHAPTER 4: RESULTS AND DESCUSSION	42
4.1 Case Scenario and Steps.	42
4.1.1 Data input and curves intersection	42
4.1.2 Slurry volume calculations (V _{slurry})	45
4.1.3 Slurry invasion steps inside reservoir	47
4.1.4 Shale gas production calculations	51
4.2 Discussion of The Factors Affecting The Model Results	53
4.2.1 Effect of polymer concentration on optimum average frac	
width	53
4.2.2 Effect of slurry density on optimum average frac width	55
4.2.3 Effect of tubing diameter on optimum average frac width	57
4.2.4 Effect of slurry viscosity on optimum average frac width	58
4.2.5 Bottom hole pressure versus injection flow rate	60
4.2.6 Comparison with hydrodynamic model	62
4.2.7 Effect of pressure and temperature on reservoir properties a	
gas production rate	64
4.2.7.1 Effect of pore pressure	64
4.2.7.2 Effect of reservoir temperature	69
4.2.8 Effect of proppant concentration on the gas production	74

CHAPTER 5 : CONCLUSIONS AND RECOMMENDATIONS	79
REFERENCES	82
APPENDICES	87
Appendix A: Programming Code Symbols and The Real Factors with	
Units	88
Appendix B: Initial / Default Values for Each Parameter	92
Appendix C: The Codes and Equations Inside Computer Model	93
Appendix D : Application Interface (Inputs and Outputs)	104
Appendix E : Calculating Average Fractures Width Over the Quadrant	
Using Integration.	105
VITA	108

LIST OF TABLES

Table 3.1	Rhyological properties of gel fluid
Table 4.1	Initial / fixed input data for the computer model
Table 4.2	Fracture steps and resulting (Wagv,opt) and injected slurry volume50
Table 4.3	Polymer concentration (CP) (lbm/Mgal) and (W _{avg,opt}) (ft)54
Table 4.4	Slurry density (Rsl) (lb/gal) and (W _{avg,opt}) (ft)
Table 4.5	Tubular diameter (D) (in) and (W _{avg,opt}) (ft)
Table 4.6	Slurry viscosity (cp) and (W _{avg,opt}) (ft)
Table 4.7	Pressure losses (psi) versus Q input (bbl/min)62
Table 4.8	Fracture propagation pressure $P_{f,p}$ (psi) versus Q_{inj} (bbl/min)
Table 4.9	Hydrodynamic model data and results
Table 4.10	Final results compared to hydrodynamic model63
Table 4.11	Pore pressure (psi) and minimum horizontal stress (Psi)64
Table 4.12	Pore pressure (psi) and Poisson's ratio (dimensionless)65
Table 4.13	Pore pressure (psi) and shear modulus (psi)66
Table 4.14	Temperature (°F) and Young modulus (psi)
Table 4.15	Temperature (°F) and Poisson's ratio (dimensionless)68
Table 4.16	Temperature (°F) and shear modulus (psi)69
Table 4.17	Pore pressure (psi) and average propped width (ft)70
Table 4.18	Temperature (°F) and average propped width (ft)71
Table 4.19	Proppant weight (lb/gal of slurry) and average propped width (ft)72
Table 4.20	Proppant concentration (lb/gal) and propped width (ft)73
Table 4.21	Proppant Weight/ one slurry gal (lb/gal) and W propped (ft)75
Table 4.22	Proppant concentration % and W propped (ft)75
Table 4.23	Proppant concentration % and Shale Porosity %76
Table 4.24	Proppant concentration % and gas production rate (SCF/day)77

LIST OF FIGURES

Figure 2.1	Fracture propagation for one step.	3
Figure 2.2	Fracture invasion steps.	4
Figure 2.3	Fracture width, length and height.	4
Figure 2.4	Shale gas plays in USA [4]	5
Figure 2.5	Shale gas plays all over the world [5]	6
Figure 2.6	Shale gas in Egypt	6
Figure 2.7	Relation between (E/E _o) and T ^o R[7]	7
Figure 2.8	Partially decoupled model steps[11]	9
Figure 2.9	Propagation rate L/t for various values of iD[11]	10
Figure 2.10	North Berth Basin structure [16]	11
Figure 2.11	North Berth Basin formations [16]	12
Figure 2.12	Effect of Treatment Fluid (TF) [16]	13
Figure 2.13	Final shape of fracture complexity by (UFM) [20]	.14
Figure 2.14	Fracture area as a function of time between jobs[18]	15
Figure 2.15	Zipper fracture technique [18]	15
Figure 2.16	Zipper technique-three wells in Wolfcamp shale gas [20]	16
Figure 2.17	Four values for the time between jobs and the resulting networks [18]	17
Figure 2.18	Various cumulative gas production versus time difference va [17]	lues
Figure 2.19	MS _{int} calibration [27]	21
Figure 2.20	Proppant distribution at the start of production [26]	21
Figure 2.21	Directions of the principal fracture to the horizontal well [35]	25
Figure 2.22	Divided vertical fractures in transverse direction [36]	26
Figure 2.23	Vertical fractures in transverse direction [37]	26
Figure 2.24	Plane view for fracture networks in shale gas reservoir [35]	28
Figure 2.25	Viscosity of this mix at a temperature 170 °C and 170 S ⁻¹ [18]	29

Figure 3.1	Flow chart of the methodology calculations	30
Figure 3.2	Software interface design.	41
Figure 4.1	Ideal and actual curves intersection	44
Figure 4.2	First step of slurry invasion and the resulting (Wavg.opt)	47
Figure 4.3	Second step of slurry invasion and the resulting $(W_{avg,opt})$	48
Figure 4.4	Third step of slurry invasion and the resulting $(W_{avg,opt})$	49
Figure 4.5	Plane view of slurry invasion steps.	51
Figure 4.6	$(W_{avg,opt})$ (ft) and polymer concentration (CP) (lbm/Mgal)	55
Figure 4.7	(W _{avg,opt}) (ft) and slurry density (Rsl) (lb/gal)	57
Figure 4.8	$(W_{avg,opt})$ (ft) and (D) (in)	58
Figure 4.9	(W _{avg,opt}) (ft) and (VISsl) (CP)	60
Figure 4.10	Pressure losses (psi) vs (Q _{inj}) (bbl/min)	61
Figure 4.11	BHP (psi) vs (Q _{inj}) (bbl/min).	62
Figure 4.12	Pore pressure (psi) and minimum horizontal stress (psi)	65
Figure 4.13	Pore pressure (psi) and Poisson's ratio (dimensionless)	66
Figure 4.14	Pore pressure (psi) and shear modulus (psi)	67
Figure 4.15	Temperature (°F) and Young modulus (psi)	68
Figure 4.16	Temperature (°F) and Poisson's ratio (dimensionless)	69
Figure 4.17	Temperature (°F) and shear modulus (psi)	70
Figure 4.18	Pore pressure (psi) and average propped width (ft)	71
Figure 4.19	Temperature (°F) and average propped width (ft)	72
Figure 4.20	Proppant weight (lb/gal of slurry) and average propped width (ft)	73
Figure 4.21	Proppant concentration (lb/gal of slurry) and Wpropped (f)	74
Figure 4.22	Proppant Weight/ one slurry gal (lb/gal) and Wpropped (ft)	75
Figure 4.23	Proppant concentration % and Wpropped (ft)	76
Figure 4.24	Proppant concentration % and shale porosity %	77
Figure 4.25	Proppant concentration % and gas production rate (SCF/day)	77

NOMENCLATURE

Alphabitic Letters

Area. ft² Α =Calibration factor that is used to adjust the measured MSint BHP Total bottom hole pressure, psi =Concentration lbm/Mgal \mathbf{C} CMHPG =Carboxymethyl hydroxyprobyl guar. DP Dual porosity. Darcy Author of Darcy law. = darcy Unit of permeability. Tubular diameter, in d =Е Elasticity Modulus, psi Aperture of the fracture "fracture width". e FC Fractures conductivity, darcy.ft G Shear modulus, psi Gravitional acceleration ft/s² g = Η Height, ft HF Hydraulic fracture intensity, Frac / m = Dimensionless flow rate, dimensionless ID = Over all formation leak off coefficient, ft/ min^{0.5} K An adjustment, dimensionless factor for μ and E which is k =estimated to be 3.44x10⁻⁴ $K_{\rm f}$ Fractures permeability, Darcy =**KGD** Khristianovic-Geertsma-de. "name of the author who proposed =KGD model for hydraulic fracturing" L Length, ft = M Factor for proppant correction calculations, dimensionless = MS Microseismic, frac/ft = Reynold number, dimensionless Nre n',k' Power law model coefficients, dimensionless P Pressure, psi Perkins-Kern-Nordgren "name of the author who proposed PKN **PKN** = model for hydraulic fracturing" Flow rate, for slurry unit is bbl/min, for gas unit is SCF/day. Q **REV** Representative element volume. Connection factor, dimensionless S TF Treatment fluid TOC Total organic content

UFM = Unconventional fracture model

 $V = Volume, ft^3$ V = Velocity, ft / s

VES = Viscoelastic surfactant.

W = Width, ft

Greek Letters

 ρ = Density, ppg

 σ = Horizontal stress (Sigma), psi υ = Poisson's ratio, dimensionless

 μ = Viscosity, cp

 β = Formation volume factor, ft³/SCF.

Sub-scripts

avg = Average B = Bulk

e = reservoir drive.

 $egin{array}{lll} f & = & & Fracture \ g & = & Gas \end{array}$

h = Hydrostatic
i = Injection
int = Intensity
opt = Optimum
p = Polymer

prop = propped width or volume.

r = Slurry to gel ratio.

 $egin{array}{lll} sl &=& Slurry \ wf &=& well flow. \ X &=& X-Axis \ Y &=& Y-Axis \end{array}$