

ROLE OF BIOLOGICAL TREATMENT OF WASTEWATER IN REMOVAL OF ANTIBIOTIC RESISTANT BACTERIA

THESIS

For The Degree of Doctor of Philosophy in Science, (Microbiology)

By

Salwa Samir Mohamed Ebrahim

B.Sc. Microbiology (2003)
M. Sc. Microbiology (2010)

Faculty of Science Ain Shams University 2018

ROLE OF BIOLOGICAL TREATMENT OF WASTEWATER IN REMOVAL OF ANTIBIOTIC RESISTANT BACTERIA

THESIS

For The Degree of Doctor of Philosophy in Science, (Microbiology)

By

Salwa Samir Mohamed Ebrahim

B.Sc. Microbiology (2003)
M. Sc. Microbiology (2010)

Supervisors

Prof. Dr. Yousseria M. Shetaia

Prof. Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr. Ahmed Mahmoud Shaban

Prof. of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Centre

Prof. Dr. Mohamed Mohamed Kamel

Prof. of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Centre

Dr. Samar S. Mohammed

Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

> Faculty of Science Ain Shams University (2018)

ROLE OF BIOLOGICAL TREATMENT OF WASTEWATER IN REMOVAL OF ANTIBIOTIC RESISTANT BACTERIA

By

Salwa Samir Mohamed Ebrahim

For the degree of Doctor of Philosophy in *Science*, *PhD* (Microbiology)

Supervisors

Prof. Dr. Yousseria M. Shetaia	•••••
Prof. Microbiology, Microbiology Department,	
Faculty of Science, Ain Shams University	
Prof. Dr. Ahmed Mahmoud Shaban	•••••
Prof. of Water and Wastewater Microbiology, Water	
Pollution Research Department, National Research Cent	tre
Prof. Dr. Mohamed Mohamed Kamel	•••••
Prof. of Water and Wastewater Microbiology, Water	
Pollution Research Department, National Research Cen	tre
Dr. Samar S. Mohammed	• • • • • • • • • • • • • • • • • • • •
Lecturer of Microbiology, Microbiology Department,	
Faculty of Science, Ain Shams University	

DEDICATION

I would like to dedicate this work to whom beats my heart with their presence in my life; to my father, my mother, my lovely husband and my children (Adhm, Anas, Aseel), for their patience, help and for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENTS

My great thanks to ALLAH for all HIS gifts. I supplicate to ALLAH to make my life in a perfect way.

I wish to express my appreciation to Prof. Dr. Yousseria Mohamed Hassan Shetaia, Professor of Microbiology, Faculty of Science, Ain Shams University, for her much valued guidance, for her detailed review, constructive criticism and excellent advice during the preparation of this thesis.

It is my pleasant duty to assure my sincere appreciation, my deepest thanks and gratitude to Prof. Dr. Ahmed Mahmoud Shaban, Professor of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Centre (NRC), for his kind supervision, valuable advice, guidance and suggestions through this study.

My sincere appreciations and gratitude to Prof. Dr. **Mohamed Mohamed Kamel**, Professor of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Centre (NRC), from whom I received the support during this study.

My thanks and gratitude to Dr. Samar Samer El-Sayed, Lecturer of Microbiology, Faculty of Science, Ain-Shams University, for her aid and help in this study.

My sincere thanks also go to Prof. Dr. Gamila El-sayed El-Taweel, Professor of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Centre (NRC), who gives me valuable advises and friendly help on my study and research.

Deep appreciation is given to Prof. Dr. Gamila Hussein Ali, Professor of Hydrobiology, Water Pollution Research Department, National Research Centre (NRC), for her aid and help in this study. Thanks, are also extended to the members of the water pollution research department, NRC, and Microbiology Department, faculty of science, Ain Shams university for their cooperation and help which enable this work to be accomplished.

SALWA SAMIR MOHAMMED

CONTENTS

Subject	Page
LIST OF TABLES.	i
LIST OF FIGURES	v
LIST OF ABBRIVIATIONS	viii
ABSTRACT	xi
I. INTRODUCTION	1
II. LITERATURE REVIEW	5
1. Risks of Frequent Use of Antibiotics	5
2. Antibiotic Resistance Crisis Management	9
3. Antibiotic Resistance Risk in Egypt	11
4. Antibiotics Resistance Among Fecal Indicator Bacteria and	
Environmental Pathogens	12
4.1. Resistance in fecal indicator bacteria.	13
4.2. Resistance in bacterial pathogen	16
5. Antibiotic Resistant Bacteria (ARB) in Different Aquatic	
Environment	20
5.1. ARB in domestic wastewater treatment plants (DWTP)	20
5.2. Antibiotic resistant bacteria in hospital wastewater	22
5. 3. Antibiotic resistant bacteria in surface water	25
6. Wastewater Treatment Process.	27
7. Role of Wastewater Treatment Process in Elimination of ARB	29
8. Mode of Action of Antibiotics on the Bacterial Cell	34
8.1. Interference with nucleic acid synthesis	34
8.2. Disruptions of cell wall synthesis	34
8.3. Inhibition of metabolic pathway	35
8.4. Inhibition of protein synthesis	35

	8.5. Disorganization of the cell membrane	35
	9. Antibiotic Resistance Mechanisms	36
	9. 1. Biochemical aspects of antibiotic resistance	36
	9. 1.1. Antibiotic inactivation	36
	9. 1.1.1. Antibiotic inactivation by hydrolysis	37
	9. 1.1.2. Antibiotic inactivation by redox mechanism	37
	9. 1.1.3. Antibiotic inactivation by group transfer	37
	9. 1. 2. Target (bacteria) modification	38
	9. 1. 2.1. DNA synthesis disorder	38
	9. 1.2.2. Protein synthesis interference	38
	9. 1.2.3. Peptidoglycan structure disorder	39
	9. 1.2.4. Outer membrane permeability	39
	9. 1.2.5. Efflux pumps	39
	9. 2. Genetic aspects of antibiotic resistance	40
	9. 2.1. Genetic transformation	41
	9. 2.2. Genetic conjugation	41
	9. 2.3. Genetic transduction	41
	10. Classes of Antibiotics	42
	11. Determination of ARB in Aquatic Environments	47
	12. Detection of Antibiotic Resistance Genes	48
	13. Detection Methods of Antibiotic Residues	51
	14. Disinfection Effect on ARB	52
II	II: MATERIALS AND METHODS	54
	1. Sampling Sites and Procedures	54
	1.1. Domestic wastewater samples	54
	1. 2. Surface water samples	55
	1.3. Hospital wastewater samples	56
	2 Racteriological Examination	56

2.1. Isolation and identification of bacterial indicators and some	
pathogenic bacteria	5
2.1.1. Isolation and identification of <i>Escherichia coli</i> according	
to MacFaddin, (1985)	5
2. 1.1.1. Presumptive test	5
2. 1.1.2. Confirmed test.	5
2.1.1.2. a. Indole test	5
2.1.1.2. b. MR-VP test	5
2.1.1.2. c. Citrate utilization test	5
2.1. 2. Isolation and identification of <i>Enterococci</i> spp. according	
to APHA, (2012)	5
2.1. 2.1. Presumptive test.	5
2.1. 2.2. Confirmed test.	5
2.1. 2.2. a. Catalase and Gram stain	6
2. 1.2.2. b. Growth at elevated temperature and salinity	6
2. 1.2.2. c. Pyruvate test	6
2.1.3. Isolation and identification of Salmonella Typhimurium	
according to APHA, (2012)	6
2.1. 3.1. Presumptive test.	6
2.1. 3.2.Confirmed test.	6
2.1.4. Isolation and identification of Staphylococcus aureus	
according to Zangerl and Asperger, (2003)	6
2.1. 4.1. Presumptive test.	6
2.1. 4.2.Confirmed test.	6
2.2. Verification of bacterial isolates using BIOLOG GEN III	6
3. Antibiotic Susceptibility Test (Kirby-Bauer Assay)	6
4. Genetic Transformation Experiment	6

5. Enumeration of Total Heterotrophic Bacteria and Antibioti	.c 6
Resistant Bacteria	
6. Detection of Various Antibiotic Resistant Genes (ARGs	s)
Using PCR Technique	7
6. 1. DNA extraction	7
6.1.1. Sample Preparation	7
6.1.2. Lysis	7
6.1.3. DNA Binding.	7
6.1.4. Wash	7
6.1.5. Elution	7
6.2. Amplification step; polymerase chain reaction (PCR)	7
7. Quantification of Antibiotics Residues	7
7.1. Extraction procedure	7
8. Chlorination of Sensitive and Resistant Isolates	-
8.1. Chlorine water preparation	
8.2. Determination of Chlorine concentration	8
8.3. Determination of chlorine breakpoint and residual chlorine	. 8
9. Data Analysis and Statistical Analysis	8
9.1. Data analysis	8
9.1. 1. Antibiotic susceptibility test	8
9.1.2. Antibiotic resistance percentage	8
9.1.3. Multiple antibiotics resistance (MAR) index	8
9.1.4. Removal rate of ARB in ZWWTP	8
9.2. Statistical analysis	8
10. Media and Reagents	8
10. A. MEDIA	8
10. B. REAGENTS	Ç

IV: RESULTS	100
A. Domestic Wastewater Samples (ZWWTP)	107
A.1. Determination of Fecal Bacterial Indicators and Some	
Pathogenic Bacteria and Their Antibiograms in ZWWTP	108
A. 1.1. Determination of <i>E. coli</i> in ZWWTP	108
A. 1.2. Antibiograme of <i>E. coli</i> isolated from ZWWTP	110
A.1.3. Determination of <i>Enterococci</i> spp. in ZWWTP	114
A.1.4. Antibiograme of Enterococcus faecalis isolated from	
ZWWTP	115
A.1.5. Determination of <i>Salmonella</i> Typhimurium in ZWWTP	120
A.1.6. Antibiograme of Salmonella Typhimurium isolated from	
ZWWTP	122
A.1.7. Determination of Staphylococcus aureus in ZWWTP	125
A.1.8. Antibiograme of Staphylococcus aureus isolated from	
ZWWTP	127
A.1.9. Multiple Antibiotic Resistance (MAR- index) of bacterial	
indicators and pathogens isolated from ZWWTP	132
A. 2. Genetic Transformation	134
A. 3. Antibiotic Resistant Genes (ARGs) in bacterial isolates	
isolated from ZWWTP	136
A.4. Prevalence of Total Heterotrophic Bacteria and Heterotrophic	
Antibiotic Resistant Bacteria in ZWWTP	140
A.4.1.Relation between ARB proliferation and biological	
treatment stages of ZWWTP	152
A.4.2.The efficiency of biological treatment process in the	
removal of THBC and HARB	153