

THIN WALL DUCTILE IRON (TWDI) AND AUSTEMPERED DUCTILE IRON (TWADI) CASTINGS

By

Noha Saeed Abdel-Haleem El-Banna

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Metallurgical Engineering

THIN WALL DUCTILE IRON (TWDI) AND AUSTEMPERED DUCTILE IRON (TWADI) CASTINGS

By

Noha Saeed Abdel-Haleem El-Banna

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Metallurgical Engineering

Under the Supervision of

Prof. Dr. Abdel-Hamid Ahmed Hussein

Professor of Metallurgy

Mining, Petroleum, and Metallurgical

Department Faculty of Engineering, Cairo University

in

Professor of Metal Casting
Foundry Technology Laboratory
Central Metallurgical for R&D Institute (CMRDI)

Prof. Dr. Adel Abdel Moneim Saleh Nofal

Dr. Mahmoud Talaat Abdo

Assistant Professor Mining, Petroleum, and Metallurgical Department Faculty of Engineering, Cairo University

THIN WALL DUCTILE IRON (TWDI) AND AUSTEMPERED DUCTILE IRON (TWADI) CASTINGS

By

Noha Saeed Abdel-Haleem El-Banna

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

MASIER OF SCIENCE

in

Metallurgical Engineering

Approved by the

Examining Committee:

Prof. Dr: Abdel-Hamid Ahmed Hussien, Thesis Main Advisor

Prof. Dr.: Adel Abdel-Moniem Saleh Nofal, Advisor

Central Metallurgical R&D Institute (CMRDI)

Dr: Mahmoud Tash,Internal Examiner

Prof. Dr.: Mohamed Abdel Wahab Waly, External Examiner

Central Metallurgical R&D Institute (CMRDI)

Engineer's Name: Noha Saeed Abdel-Haleem El-Banna

Date of Birth: 8 / 3 / 1988 **Nationality:** Egyptian

E-mail: Nohaelbanna88@gmail.com

Phone: 01099022349

Address: Cairo – Helwan – 58 El Moaeed St.

Registration Date: 1 / 10 / 2014 **Awarding Date:** / / 2018 **Degree:** Master of Science

Department: Mining, Petroleum and Metallurgy Engineering

Supervisors:

Prof. Dr. Abdel-Hamid Ahmed Hussien, (Thesis Main Advisor) Prof. Dr. Adel Abdel Moniem Saleh Nofal, (Advisor)

Central Metallurgical R&D Institute (CMRDI)

Dr. Mahmoud Talaat Abdo, (Advisor)

Examiners:

Prof. Dr. Abdel-Hamid Ahmed Hussien, (Thesis Main Advisor) Prof. Dr. Adel Abdel Moniem Saleh Nofal, (Advisor)

Central Metallurgical R&D Institute (CMRDI)

Dr. Mamdouh Tash, (InternalExaminer)
Prof. Dr. Mohamed Abdel Wahab Waly, (ExternalExaminer)

Central Metallurgical R&D Institute (CMRDI)

Title of Thesis:

THIN WALL DUCTILE IRON (TWDI) AND AUSTEMPERED DUCTILE IRON (TWADI) CASTINGS

Key Words:

Thin Wall Castings, Ductile Iron, Austempered Ductile Iron, Cooling Rate, Mechanical Properties.

Summary:

There are 3 major challenges that face automotive manufacturers: emissions control, cost manufacture reduction and fuel economy improvement. When thin wall ductile iron casting was introduced to be used for automotive industry, there were many problems experienced in trying to produce it. This research aims at investigating metallurgical and technological parameters involved in the production of thin wall and light weight iron castings (3mm) for automotive applications. Two grades of iron will be studied i.e. ductile iron (DI) and austemeperd ductile iron (ADI) castings. Parameters to be studied will include: the chemical composition of the iron alloys, the melting and the molten treatment, the solidification rate and the molding techniques (green sand, green sand + 10% insulation material and investment castings), and the austempering treatment for ADI. This study will cover the effect of the rate of cooling on the matrix structure and the mechanical properties of DI & ADI castings as well as the influence of the austempering temperature on the mechanical properties of ADI.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have

cited them in the references section.

Dedication

To my Family and my friends who supported me along the way.

Acknowledgments

I would like to express my deep regards and sincere gratitude to Prof. Dr. Abdel-Hamid A. Hussein, Faculty of Engineering, Cairo University for his care, kind supervision, encouragement, constant efforts, and valuable stimulating guidance and fruitful discussion throughout this study.

I offer my profuse thanks with humble reverence to Prof. Adel Nofal, Foundry Technology Laboratory, Central Metallurgical Research and Development Institute (CMRDI), for his invaluable guidance and support. He was a beacon light, whose constant efforts and encouragement proved to be a parallel stimulus in completing this research successfully.

I would like to thank Assistant Dr. Mahmoud Talaat, Faculty of Engineering, Cairo University for his supervision.

I am grateful to my supervisor Dr. Mohamed Morad for his support and co-operation in the hours of need and for his expert.

This Work is fully supported by the Science and Technology Department Fund (STDF) under the frame work of the Korean project titled "Thin-Wall Iron Castings for Automotive Applications".

Last but not least, special thanks are due to the staff of Foundry Technology Laboratory, CMRDI and particularly metallographic, melting, workshop staff for their sincere help.

Finally, I would like to acknowledge with gratitude, the support and love of my family – my parents and my lovely sister and brother. They all kept me going and my work wouldn't have been possible without them.

Table of Contents

Ack	nowledgments	I
Tab	le of Contents	.II
List	of Tables	VI
List	of FiguresVI	
Non	nenclatureXI	
Abst	tractXI	V
Cha	pter 1: Introduction	1
Cha	pter 2: Literature Review	2
	Ductile Iron (DI) Castings	
2.1.	Introduction	2
2.2.	Background and history of thin wall ductile iron (TWDI) in automotive sector	4
2.3.	Various grades of (DI)	5
2.4.	Thin wall ductile iron (TWDI) castings.	6
2.5.	Factors affecting the cooling rate of (TWDI) castings	€
	2.5.1. Effect of the section size on the cooling rate of (TWDI) castings2.5.2. Effect of the pouring temperature on the cooling rate of (TWDI) castings2.5.3. Effect of the insulation sand on the cooling rate of (TWDI) castings	9
2.6.	Properties of (DI) castings	.12
	 2.6.1. Physical properties of (DI) castings. 2.6.2. Service properties of (DI) castings. 2.6.3. Mechanical properties of (DI) castings. 	.13
	2.6.3.1. Tensile properties of (DI) castings	.14

	2.6.3.1.1. Effect of Silicon on the tensile strength and the impa of (DI) castings	$\dots 16$
2.7.	Chemical composition of (DI) castings.	18
	2.7.1. The primary elements in ductile iron castings	18
	2.7.1.1. Effect of Carbon.	18
	2.7.1.2. Effect of Silicon	19
	2.7.1.3. Effect of Manganese.	
	2.7.1.4. Effect of Sulphur	
	2.7.1.5. Effect of Phosphorus	20
	2.7.2. Alloying elements.	21
	2.7.2.1. Primary elements	21
	2.7.2.2. Effect of Copper	
	2.7.2.3. Effect of Nickel	
	2.7.2.4. Effect of Chromium	
	2.7.2.5. Effect of Molybdenum	
	2.7.2.6. Effect of Tin	23
	Austempered Ductile Iron (ADI) Castings	
2.8.	Introduction:	24
2.9.	Background and history of Austempered Ductile Iron (ADI)	24
2.10	. Standard specification of Austempered Ductile Iron (ADI)	25
2.11	. Market development	25
2.12	. Austempering heat treatment for (ADI) production	26
	2.12.1. The austenitization stage	27
	2.12.1.1. Austenitization temperature	
	2.12.1.2. Austenitization time	
	2.12.2 The manual in a stand	
	2.12.2. The quenching stage	28
	2.12.2. The quenching stage	
	2.12.2.1 ne quenching stage	29
	2.12.2.1. Cooling rate.	29 29

	2.12.3.1. Austempering temperature	
	2.12.4. The cooling processes	31
2.13	Selection of ductile iron for austempering process	31
2.14	. Microstructure of Austempered Ductile Iron (ADI)	32
2.15	. Metallurgy of Thin Wall Austempered Ductile Iron (TWADI)	34
	 2.15.1. Chemical composition. 2.15.2. Molding and casting. 2.15.3. Solidification structure, micro segregation and carbides. 2.15.4. Solid state transformation kinetics, final microstructure and properties. 	34 34
Cha	pter 3: Experimental Work	36
3.1.	Research objectives.	36
3.2.	Preparation of casting and alloying.	38
	3.2.1. Pattern design. 3.2.2. Mold making. 3.2.3. Melting process. 3.2.4. Production of ductile iron.	38
3.3.	Austempering of DI castings	41
3.4.	Characterization of DI & ADI	42
	3.4.1. Chemical composition analysis	42
	3.4.2. Metallographic analysis	42
	3.4.2.1. Sampling. 3.4.2.2. Grinding. 3.4.2.3. Polishing. 3.4.2.4. Etching. 3.4.2.5. Optical microscope.	42 43 43
	3.4.3. Mechanical testing.	43
	3.4.3.1. Tensile testing	

Cha	pter 4: Results and Discussions4	4
4.1.	Microstructures characterization of TWDI as related to chemical composition, was thickness, mold material, type and technique of inoculating	
	4.1.1. TWDI cast in green sand molds (GS)	%
	4.1.3. TWDI cast in investment mold (Inv)	
4.2.	Microstructural analysis6	66
	4.2.1. Effect of nodule count (N.C)	
4.3.	Mechanical properties of TWDI with thickness of 3, 6, and 9 mm	57
	4.3.1. The ultimate tensile strength (UTS)	57
	4.3.1.1. Green sand molds	69
	4.3.2. The Elongation %	74
	4.3.2.1. Green sand molds	74
	4.3.3. The impact energy	78
4.4.	. The effect of heat treatment parameter on the microstructure of TWADI castings with thicknesses of 3, 6, 9 mm	
4.5	. The effect of heat treatment parameter on the mechanical properties of TWAI castings with thicknesses of 3, 6, 9 mm	
Cha	pter 5: Conclusions8	89
		0
12 61 6	'I FIII FN	/ E #

List of Tables

Table 2.1: Designation of Ductile Iron 5
Table 2.2: Spectroscopic analysis of the ductile iron melts labeled A-D 7
Table 2.3: Microstructure analysis results 7
Table 2.4: General information on the mechanical properties variations of carbide free ductile iron as section thickness varies
Table 2.5: The ability of the mold material to absorb the heat
Table 2.6: Mechanical properties of ADI according to ASTM 897M-90. 25
Table 3.1: The chemical composition, the carbon equivalents, the types of molding, the inoculant types and the processing of addition
Table 3.2: The chemical composition of the charge material. 39
Table 3.3: The chemical composition of the two inoculants. 40
Table 3.4: Chemical composition of thin wall ductile iron (TWDI) castings
Table 4.1: Nodule count range.49
Table 4.2: Nodule count values.51
Table 4.3: The effect of the inoculation technique on F/P ratio. 54
Table 4.4: The effect of Si content on F/P ratio 54
Table 4.5: The effect of the cooling rate on F/P ratio. 54
Table 4.6: The effect of the cooling rate on F/P ratio. 54
Table 4.7: The effect of nodule count on F/P ratio. 55
Table 4.8: The effect of the mold type on the properties of TWDI castings with C.E 4.5. 2.5% Si and treated with single step inoculation
Table 4.9: The effect of the mold type on the properties of TWDI castings with C.E 4.5. 2.6% Si and treated with double step inoculation
Table 4.10: The effect of the mold type on the properties of TWDI castings with C.E. 4.5. 3.15% Si and treated with single step inoculation

Table 4.11: The effect of the mold type on the properties of TWDI castings with C.E 4.5, 3.28% Si and treated with double step inoculation
Table 4.12: The effect of the mold type on the properties of TWDI castings with C.E 4.7, 2.6% Si and treated with single step inoculation
Table 4.13: The effect of the mold type on the properties of TWDI castings with C.E 4.69, 2.7% Si and treated with double step inoculation
Table 4.14: The effect of the mold type on the properties of TWDI castings with C.E 4.7, 3.32% Si and treated with single step inoculation. Nital etched samples
Table 4.15: The effect of the mold type on the properties of TWDI castings with C.E 4.7, 3.37% Si and treated with double step inoculation
Table 4.16: The effect of the double inoculation and Si content on the ferrite fraction63
Table 4.17: The effect of Si content on the properties of TWDI. 65
Table 4.18: The mechanical properties of TWDI samples cast in green sand molds68
Table 4.19: The mechanical properties of TWDI samples cast in green sand + 10% Al ₂ O ₃ molds
Table 4.20: The mechanical properties of TWDI samples cast in ceramic molds70
Table 4.21: Ultimate tensile strength and yield strength as a function of thickness, austempering temperature, iron composition and molding using inoculant (1)85
Table 4.22: Ultimate tensile strength and yield strength as a function of thickness, austempering temperature, iron composition and molding using inoculant (2)86
Table 4.23: Ultimate tensile strength and yield strength as a function of thickness, austempering temperature, iron composition and molding using inoculant (1)87
Table 4.24: Ductility and impact as a function of thickness, austempering temperature, iron composition and molding material using inoculant (2)

List of Figures

Figure 2.1: Relative cost per unit of yield strength for different metallic materials
Figure 2.2: Relative weight per unit of yield strength for different metallic materials3
Figure 2.3: Variation in nodule count with varying amount of Cu additions in castings7
Figure 2.4: Solidification time vs. thickness of sand cast plates. Both measured and calculated date points are shown by symbols
Figure 2.5: Effect of cooling rate on the number graphite nodules9
Figure 2.6: Cast iron castability as a function of wall thickness, poured into molds made of different molding materials
Figure 2.7: Microstructure of ductile iron in castings with different wall thicknesses: (a) 2mm (SMS mold), (b) 3mm (SMS mold), (c) 5mm (SMS mold), (d) 13mm (SMS mold), (e) 2mm (LDASC mold), and (f) 13mm (LDASC mold). No etched samples
Figure 2.8: Microstructure of ductile iron in castings with different wall thicknesses [8]: (a) 2 mm (SMS mold), (b) 3 mm (SMS mold), (c) 5 mm (SMS mold), (d) 13 mm (SMS mold), (e) 2 mm (LDASC mold) and (f) 13 mm (LDASC mold). Nital etched samples
Figure 2.9: Ferrite fraction as a function of cooling rate (near the equilibrium temperature of eutectoid transformation): experimental points for SMS mold, experimental points for LDASC mold
Figure 2.10: Variation of graphite nodularity with sample thickness
Figure 2.11: Variation of ultimate tensile strength with sample thickness
Figure 2.12: Variation of yield strength with sample thickness
Figure 2.13: Variation of elongation% with sample thickness
Figure 2.14: The effect of silicon content on ferrite content
Figure 2.15: Variation in tensile strength with respect to casting section thickness in ductile iron step castings with compositions A-D
Figure 2.16: Variation in hardness with respect to casting section thickness in ductile iron step castings with compositions A-D
Figure 2.17: Typical range for carbon and silicon contents in good quality ductile iron19

Figure 2.18: Recommended maximum manganese content as a function of silicon content and wall thickness
Figure 2.19: Typical relationship between elongation and yield strength of ductile irons with different matrix structure
Figure 2.20: ADI European Market Distribution – Years 2012-201325
Figure 2.21: Schematic isothermal transformation diagram illustrating the austempering process for cast irons
Figure 2.22: Effect of austenitizing temperature on the mechanical properties of Austempered Ductile Iron casting
Figure 2.23: Isothermal transformation diagram for an ADI alloy
Figure 2.24: Schematic diagram shows the effect of quenching severity on the austempering reaction
Figure 2.25: Effect of austempering temperatures on (a) yield strength, (b) elongation in ADI
Figure 2.26: Schematic diagram showing the effect of austempering time on the amount and the stability of austenite and the hardness of ADI
Figure 2.27: ADI microstructure consists of acicular ferrite in high carbon austenite matrix
Figure 2.28: Microstructures of ADI heat treated by (A) The single step austempering process at different temperatures, (a) 399°C, (b) 371°C, (c) 343°C, (d) 288°C. (B) The double step austempering process at different temperatures, (a) 399°C, (b) 371°C, (c) 343°C, (d) 288°C.
Figure 2.29: Nodule count as a function of thickness
Figure 3.1: The stepped pattern used for the preparation of casting molds, all dimensions in mm
Figure 3.2: The production of investment molds
Figure 3.3: (A) A typical Vortex unit used for spheroidization and inoculation of molten iron: (a) refractory, (b) additives hopper, (c) interchangeable calibrated orifice and (d) shut off slide, (B) Vortex unit available at CMRDI
Figure 3.4: Pouring of molten iron: (a) in green sand molds, (b) in investment molds41
Figure 4.1: Microstructure and phase analysis of TWDI samples cast in green sand molds with C F 4.5. 2.61% Si and treated with single step inoculation. Nital etched samples