

STRENGTHENING OF R.C. FLAT SLABS WITH CUT-OUT EDGE OPENINGS

By

FAISAL WALID HAFEZ

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

STRENGTHENING OF R.C. FLAT SLABS WITH CUT-OUT **EDGE OPENINGS**

By **FAISAL WALID HAFEZ**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in

STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. HANY AHMED

ABDALLA

Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University

Dr. KHALED FAROUK OMAR **El-KASHIF**

Assistant Professor Structural Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

STRENGTHENING OF R.C. FLAT SLABS WITH CUT-OUT **EDGE OPENINGS**

By **FAISAL WALID HAFEZ**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

Approved by the **Examining Committee**

Prof. Dr. Hany Ahmed Ali Abdalla

Professor of Concrete Structures

Faculty of Engineering, Cairo University

Prof. Dr. Akram Mohamed Torkey

Professor of Concrete Structures Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Ali Hasan Abdelwahab

Building Materials Research Institute Housing & Building national research Center, Egypt (External Examiner)

(Internal Examiner)

(Thesis Main Advisor)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer's Name: Faisal Walid Hafez

Date of Birth: 20/03/1992 **Nationality:** Syrian

E-mail: Faisalhz920@gmail.com

Phone: 01096645020

Address: 3 Central Street, 6 October City, Giza, Egypt

Registration Date:01/10/2016Awarding Date:..../.2019Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Hany Ahmed Ali Abdalla Dr. Khaled Farouk Omar El Kashif

Examiners:

Prof. Dr. Hany Ahmed Ali Abdalla Prof. Dr. Akram Mohamed Torkey Prof. Dr. Ahmed Ali Hasan Abdelwahab

Title of Thesis:

STRENGTHENING OF R.C. FLAT SLABS WITH CUT-OUT EDGE OPENINGS

Key Words:

Strengthening, R.C. Flat slab, Edge opening, Steel Bars, Steel Plates, CFRP Sheets, ECC.

Summary:

In this research different methods of strengthening of flat slabs with edge openings are studied theoretically and experimentally.

The experimental program consists of six square slabs with dimensions of (110*110*10) cm with cutout edge opening of 30cm*30cm. Two slabs are considered as reference slabs with and without opening. The other four slabs were strengthened using various methods including additional steel bars, Carbon Fiber Reinforced Polymer (CFRP) strips, steel plates and bolts and near surface mounted Engineered Cementations Composite (ECC) steel mesh 10cm*10cm on the tensile face only. In addition, a numerical Finite element model is used to correlate and explore various conditions for strengthening techniques. The results showed that, the ultimate load carrying capacity increased for all the repaired slabs. Also, strengthening by steel bars was the most effective method of repair.

ACKNOWLEDGMENT

I would like to show my gratitude for my supervisors (**Prof. Dr. Hany Abdalla** and **Dr. Khaled El-Kashif**) for their guidance, advices, support and valuable discussions review during my Master, and their great efforts to achieve my objective.

I want also to thank my father, my mother, and all my friends who always help me for the success. I would not have to achieve this goal without their help and support.

DEDICATION

Dedicated to my parents, my sister and my brother with love

TABLE OF CONTENTS

ACKNOWLEDGMENT	l
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	VIII
ABSTRACT	XI
CHAPTER 1 : INTRODUCTION	1
1.1 General	1
1.2 Structural Statement	1
1.3 Objective	1
1.4 Thesis Outline	2
CHAPTER 2 : LITERATURE REVIEW	3
2.1 Introduction	3
2.2 Slabs with Opening	3
2.3 Strengthening Techniques	7
2.3.1 General	7
2.3.2 Types of FRP strengthening techniques	7
CHAPTER 3 : EXPERIMENTAL PROGRAM	28
3.1 Introduction	28
3.2 Material Properties	28
3.2.1 Coarse Aggregate	28
3.2.2 Fine Aggregate	28
3.2.3 Water	28
3.2.4 Cement	28
3.2.5 Reinforcing Steel	29
3.2.6 Concrete Mix	29
3.3 Test Program	30
3.4 properties of the tested specimens	30
3.4.1 Tested specimen (S1)	30
3.4.2 Tested specimen (S2)	31

3.4.3 Tested specimen (S3)	32
3.4.4 Tested specimen (S4)	32
3.4.5 Tested specimen (S5)	33
3.4.6 Tested specimen (S6)	34
3.5 Specimens placing, curing and details	34
3.6 Cube Samples	45
3.7 Measuring Devices	48
3.7.1 Reinforcement Strain	48
3.7.2 Deflection Measurement	48
3.8 Test procedure	49
CHAPTER 4 : EXPERIMENTAL RESULTS	50
4.1 Introduction	50
4.2 Cracking of test slabs	50
4.2.1 Crack pattern of specimen (S1)	50
4.2.2 Crack pattern of specimen (S2)	51
4.2.3 Crack pattern of specimen (S3)	52
4.2.4 Crack pattern of specimen (S4)	53
4.2.5 Crack pattern of specimen (S5)	54
4.2.6 Crack pattern of specimen (S6)	55
4.3 Ultimate capacity and modes of Failure	56
4.4 Deflection of the test slabs	57
4.4.1 Load-Deflection Relations of specimen (S1)	57
4.4.2 Load-Deflection Relations of specimen (S2)	57
4.4.3 Load-Deflection Relations of specimen (S3)	58
4.4.4 Load-Deflection Relations of specimen (S4)	59
4.4.5 Load-Deflection Relations of specimen (S5)	60
4.4.6 Load-Deflection Relations of specimen (S6)	61
4.5 Analysis and discussion of test results	62
4.5.1 Introduction.	62
4.5.2 Comparison of deflection for slabs	62

4.5.2.1 Effect of the cut-out opening	62
4.5.2.2 Effect of the strengthen technique	63
4.5.3 Cracking load and ultimate capacity	64
4.5.4 Ductility	65
4.5.5 Cost of strengthening materials for specimens	65
4.5.6 Comparisons for Cost of Specimens	68
CHAPTER 5 : FINITE ELEMENT ANALYSIS	69
5.1 Introduction	69
5.2 ANSYS Program	69
5.3 Three-Dimensional Modeling	69
5.4 Finite Element Modeling of Concrete slab	69
5.4.1 Solid 65 for concrete	70
5.4.2 Link 180 for steel	71
5.4.3 SOLID 185 for CFRP	72
5.4.4 Carbon fiber reinforced polymers (CFRP)	73
5.4.5 Engineered cementations composite (ECC)	74
5.4.6 Real constants for element models	74
5.4.7 Meshing of the slab	74
5.4.8 Loads and boundary conditions	76
5.4.9 Non-linear analysis and failure criteria	76
5.4.10 Specimens models	76
5.5 Verification of specimens using Finite Element Model	81
CHAPTER 6: SUMMERY, CONCLUSION AND RECOMMENDATIONS	93
6.1 Summary	93
6.2 Conclusion	93
6.3 Recommendation for future work	94
DEEDEMCEC	05

LIST OF TABLES

Table 3-1: Mechanical Properties of Steel Bars	29
Table 3-2: Weights of One Cubic Meter of Concrete	29
Table 3-3: Properties of the all slabs	
Table 3-4: Mechanical Properties of Steel Plates	38
Table 3-5: Properties of ECC layer	43
Table 3-6: Concrete compressive strength	47
Table 4-1: Test results of the specimens	50
Table 4-2: Material Cost for Strengthening of Specimen (S3)	66
Table 4-3: Material Cost for Strengthening of Specimen (S4)	66
Table 4-4: Material Cost for Strengthening of Specimen (S5)	67
Table 4-5: Material Cost for Strengthening of Specimen (S6)	67
Table 5.1: Material properties of Epoxy	70
Table 5.2: Material properties of steel bars	71
Table 5-3: Material properties of concrete	73
Table 5-4: Material properties of CFRP sheets	
Table 5-5: Material properties of ECC	
Table 5-6: Test results of the specimens	

LIST OF FIGURES

Figure (2-1): Opening in flat slabs According to ACI -318 (2014),	
CAN3-A23.3-M84 (2004)	
Figure (2-2): openings in flat slabs (British code BS8110, 1997)	5
Figure (2-3): Opening in flat slabs According to (Egyptian Code, 2017)	7
Figure (2-4): Details of tested specimens	
Figure (2-5): Geometry and strip positioning	
Figure (2-6): configurations of specimens	10
Figure (2-7): Deponding failure of slab	11
Figure (2-8): Failure Modes of specimen.	12
Figure (2-9): CFRP strengthening schemes	13
Figure (2-10): Dimensions and details of specimen	14
Figure (2-11): Failure mode of specimens.	14
Figure (2-12: Cracks pattern for all slabs	15
Figure (2-13): Steel plates and bolts strengthened slab	16
Figure (2-14): Sketch of slab cross section a and b series	17
Figure (2-15): Different anchorage technique approaches	
Figure (2-16): strengthening scheme by CFRP sheets	
Figure (2.17). Conserts dimensions and minforcement detailing for unsetting the	d
Figure (2-17): Concrete dimensions and reinforcement detailing for un-strengther slabs and base slabs for strengthened slabs	
stabs and base stabs for strengthened stabs	20
Figure (2-18): Internal forces of slab cross-section including cut-out	20
Figure (2-19): Detailing of the FRP strengthening applied	21
Figure (2-20): Dimensions of specimens	22
Figure (2-21): Strengthening schemes of specimens	23
Figure (2-22): Detailing of the FRP strengthening applied	24
Figure (2-23): Vertical pre-stressed bolts as shear reinforcements	25
Figure (2-24): Detail of shear head	25
Figure (2-25): Strengthening scheme of specimen	26
Figure (2-26): Details of specimen	26

Figure (2-27): Test set-up and specimen	27
Figure (3-1): Details of tasted specimen (S1)	31
Figure (3-2): Details of tasted specimen (S2)	31
Figure (3-3): Details of tasted specimen (S3)	32
Figure (3-4): Details of tasted specimen (S4)	33
Figure (3-5): Details of tasted specimen (S5)	33
Figure (3-6): Details of tasted specimen (S6)	34
Figure (3-7): Wood forms before casting of concrete	35
Figure (3-8): Wood forms after casting of concrete	35
Figure (3-9): Wood forms before casting of concrete	36
Figure (3-10): Wood forms after casting of concrete	36
Figure (3-11): Cleaning the holes using Air Hose	37
Figure (3-12): Components of Epoxy A&B (Sika dur 31)	37
Figure (3-13): planting for steel bars.	37
Figure (3-14): Finishing of tasted specimen (S3)	37
Figure (3-15): Tasted of steel plate for specimen (S4)	38
Figure (3-16): Tasted of steel Bolt for specimen (S4)	38
Figure (3-17): Smoothing of surface for specimen (S4)	39
Figure (3-18): Steps of strengthening for specimen (S4)	40
Figure (3-19): Cutting of CFRP sheet for specimen (S5)	41
Figure (3-20): Smoothing of surface for specimen (S5)	42
Figure (3-21): Painting Epoxy using a brushing for specimen (S5)	42
Figure (3-22): CFRP installing for specimen (S5)	42
Figure (3-23): Final installing for specimen (S5)	42
Figure (3-24): Materials used for specimen (S6)	43
Figure (3-25): Drilling for specimen (S6)	44
Figure (3-26): Cleaning off by using air hose for specimen (S6)	44

Figure (3-27): Preparation of wood forms before casting of concrete45
Figure (3-28): Painting Epoxy using a brushing for specimen (S6)45
Figure (3-29): Installing steel grid after casted one layer of mix design45
Figure (3-30): Final layer of mix design
Figure (3-31): Nine cubic samples of the concrete mix
Figure (3-32): New mix design to strengthen specimen (S6)
Figure (3-33): Cubic sample of the new mix
Figure (3-34): Strain gauge positions
Figure (3-35): LVDTs placing
Figure (3-36): Test procedure for each specimen
Figure (4-1) Crack pattern of specimen (S1)51
Figure (4-2) Crack pattern of specimen (S2)
Figure (4-3) Crack pattern of specimen (S3)53
Figure (4-4) Crack pattern of specimen (S4)
Figure (4-5) Crack pattern of specimen (S5)55
Figure (4-6) Crack pattern of specimen (S6)
Figure (4-7) Load-Deflection relationship of Specimen (S1)
Figure (4-8) Load-Deflection relationship of Specimen (S2)
Figure (4-9) Load-Deflection relationship of Specimen (S3)
Figure (4-10) Load-Deflection relationship of Specimen (S4)60
Figure (4-11) Load-Deflection relationship of Specimen (S5)61
Figure (4-12) Load-Deflection relationship of Specimen (S6)
Figure (4-13) Load-Deflection curves at point 3 for specimens (S1 and S2)63
Figure (4-14) Load-Deflection curves at point 3 for strengthen specimens63
Figure (4-15) Ultimate Loads for Specimens64
Figure (4-16) Ductility for Specimens
Figure (4-17) Cost of Strengthening Materials for Specimens

Figure (5-1): Solid65–3D reinforced concrete solid (ANSYS .v.19)7	0
Figure (5-2): Link180–3D spar, (ANSYS .v.19)	1
Figure (5-3): Solid185–3D modeling for CFRP (ANSYS.v.19)	2
Figure (5-4): Meshing of reinforcement	5
Figure (5-5): Meshing of typical slab	5
Figure (5-6): series loads applied to slabs	6
Figure (5-7) Reinforcement of two meshes for specimen (S1) in ANSYS7	7
Figure (5-8) 3D model of specimen (S2) in ANSYS77	7
Figure (5-9) Reinforcement of two meshes for specimen (S2) in ANSYS7	8
Figure (5-10) Bottom mesh of two meshes for specimen (S3)	3
Figure (5-11) Lower chord of slab after strengthening for specimen (S4)79)
Figure (5-12) Upper chord of slab after strengthening for specimen (S4)79)
Figure (5-13) Lower chord of slab after strengthening for specimen (S5)80)
Figure (5-14) Upper chord of slab after strengthening for specimen (S5)80)
Figure (5-15) Strengthening by ECC layer for specimen (S6)	l
Figure (5-16) Cracking of Specimen (S1)82	2
Figure (5-17) Deformed shape of Specimen (S1)83	;
Figure (5-18) Comparison between ANSYS results and experimental results	
for Specimen (S1)83	3
Figure (5-19) Cracking of Specimen (S2)84	ļ
Figure (5-20) Deformed shape of Specimen (S2)85	í
Figure (5-21) Comparison between ANSYS results and experimental results	
for Specimen (S2)85	5
Figure (5-22) Cracking of Specimen (S3)86	ó
Figure (5-23) Deformed shape of Specimen (S3)	,
Figure (5-24) Comparison between ANSYS results and experimental results	
for Specimen (S3)87	7

Figure (5-25) Cracking of Specimen (S4)	88
Figure (5-26) Deformed shape of Specimen (S4)	89
Figure (5-27) Comparison between ANSYS results and experimental results	
for Specimen (S4)	89
Figure (5-28) Cracking of Specimen (S5)	90
Figure (5-29) Deformed shape of Specimen (S5)	91
Figure (5-30) Comparison between ANSYS results and experimental results	
for Specimen (S5)	91
Figure (5-31) Cracking of Specimen (S6)	92
Figure (5-32) Deformed shape of Specimen (S6)	92
Figure (5-33) Comparison between ANSYS results and experimental results	
for Specimen (S6)	92