ROLE OF CERTAIN ECONOMIC SPIDERS AS PREDATORS OF HARMFUL PESTS IN GREENHOUSES

By

DOAA MAHMOUD ABDEL HAMID ABDEL GHANI

B.Sc. Agric. Sci. (Entomology), Fac. Agric., Ain Shams Univ., 2003 M.Sc. Agric. Sci. (Zoology), Fac. Agric., Ain Shams Univ., 2009

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Zoology)

Department of Zoology and Agricultural Nematology
Faculty of Agriculture
Cairo University
EGYPT

2018

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

ROLE OF CERTAIN ECONOMIC SPIDERS AS PREDATORS OF HARMFUL PESTS IN GREENHOUSES

Ph.D. Thesis
In
Agric. Sci. (Agricultural Zoology)

By

DOAA MAHMOUD ABDEL HAMID ABDEL GHANI

B.Sc. Agric. Sci. (Entomology), Fac. Agric., Ain Shams Univ., 2003 M.Sc. Agric. Sci. (Zoology), Fac. Agric., Ain Shams Univ., 2009

APPROVAL COMMITTEE

Professor of Acarology, Fac. Agric., Al-Fayoum University	
Dr. MOHAMED SAMY EL-SAED NAWAR	
Professor of Acarology, Fac. Agric., Cairo University	
Dr. MOHAMED ABD EL-AZIZ ZAHER	
Professor of Acarology, Fac. Agric., Cairo University	
Dr. MORAD FAHMY HASSAN	
Professor of Acarology, Fac. Agric., Cairo University	

Date: 12 / 11 /2018

SUPERVISION SHEET

ROLE OF CERTAIN ECONOMIC SPIDERS AS PREDATORS OF HARMFUL PESTS IN GREENHOUSES

Ph.D. Thesis
In
Agricultural Sci. (Agricultural Zoology)

By

DOAA MAHMOUD ABDEL HAMID ABDEL GHANI

B.Sc. Agric. Sci. (Entomology), Fac. Agric., Ain Shams Univ., 2003 M.Sc. Agric. Sci. (Zoology), Fac. Agric., Ain Shams Univ., 2009

SUPERVISION COMMITTEE

Dr. MORAD FAHMY HASSAN Professor of Acarology, Fac. Agric., Cairo University

Dr. MOHAMED ABDEL AZIZ ZAHER Professor of Acarology, Fac. Agric., Cairo University

Dr. GIHAN MOHAMED EL SAYED SALLAM Head Research of Acarology, Plant Protection Research Institute, A.R.C.

Name of Candidate: Doaa Mahmoud Abdel Hamid Abdel Ghani Degree: Ph.D.

Title of Thesis: Role of Certain Economic Spiders as Predators of Harmful Pests in Greenhouses

Supervisors: Dr. Morad Fahmy Hassan

Dr. Mohamed Abdel Aziz Zaher Dr. Gihan Mohamed El Saved Sallam

Department: Zoology and Agricultural Nematology

Branch: Agricultural Zoology **Approval:** 12 / 11 /2018

ABSTRACT

The present work aimed to through light on the spiders occurrence on some plants in greenhouses in Giza governorate to conduct families and species in this ecosystem to maximize its role to reduce the population of some pests. Random samples were collected twice a month from the vegetables Tomato, Eggplant and Green bean and the fruit trees Mango and Citrus in the commercial greenhouses structure, gutter connected. There were (46) species belonging to (18) families; Dictynidae, Dysderidae, Gnaphosidae, Linyphiidae, Lycosidae, Oecobiidae Oonopidae, Pholcidae, Philodromidae, Salticidae, Scytodidae, Sicariidae, Synaphridae, Theridiidae, Thomisidae and Titanoecidae on vegetable plants. In addition to these families except the family Pholcidae the two families Eutichuridae and Uloboridae were found on fruit trees. The most abundant spider family on vegetable plants was Linyphiidae, while that on fruit trees was Eutichuridae.

There was evident relationship between *Cheiracanthium isiacum* and its prey *Phyllocnistis citrella*. In the mango orchard there were 13 spider families on the ground of which the family Salticidae had the highest number and six families on the foliage with Eutichuridae had the highest number. There were 27 species recorded new locality in Giza governorate and one species as a new record in Egypt. Some biological aspects of the two spider species and its food range were studied on *Nigma conducens* of the family Dictynidae and *Theridion hannoniae* of the family Theridiidae as a first rearing. *N. conducens* fed and developed on two types of prey, *Drosophila melanogaster* and *Pealius mori*. Social behavior was observed on this spider species. Type of prey had a statistical significant effect on the duration of the developmental stages and also on the female fecundity. Female life cycle averaged 75.91 and 107.19 days on *D. melanogaster* and *P. mori* respectively. The second species *T. hannoniae* fed and developed on *Tetranychus urticae*. Female and male life cycle averaged 94.1 and 103.06 days respectively.

Key words: Greenhouse, spiders, biological control, gut content analysis, Dictynidae, Theridiidae and biological studies

ACKNOWLEDGMENT

Firstly, Ultimate Thanks to Allah

I wish to express my special thanks, deepest gratitude and appreciation to **Dr. Mohamed Abd El Aziz Zaher and Dr.**Morad Fahmy Hassan, Professors of Acarology, Faculty of Agriculture, Cairo University, for suggesting the problem, their supervision, their continued assistance and guidance through the course of my study and for their revision of the manuscript of this thesis.

Thanks are also due to Prof. **Dr. Gihan Mohamed El Sayed Sallam**, Head research of the fruit Acarology
Department, Plant Protection Research Institute, Agriculture
Research Center. For her kind help.

Grateful appreciation is also extended to **Colonel Hisham Kamal El-Din El-Hennawy** (Arachnid Collection of Egypt) whose educating taxonomic aid, helping hand and references provided are truelly appreciated.

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
1. Spiders in Greenhouses
2. Horticulture of Mango in Green houses
3. Gut Content Analysis
4. Biology of Dictynid and Theridiid spiders
MATERIALS AND METHODS
RESULTS AND DISCUSSION
1. Ecological behavior
a. Spider families that spin web
b. Spider families that not spin web
1. Active hunter spider families
2. Passive hunter spider families
2. Description of the structure of female genitalia
3. Dominance and occurrence of spider species in
greenhouses in Giza governorate
a. Vegetable plants in greenhouses
b. Fruit trees in greenhouses.
4. Predator-prey relationship
a. Population dynamic
b. PCR assay
5. Biological study
a. Range of prey-food types
b. Developmental stages of <i>N. conducens</i> (O. Pickard-Cambridge, 1876)
c. Food consumption
d. Developmental stages of <i>T. hannoniae</i> Denis, 1944
SUMMARY
REFERENCES
ARARIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Occurrence of spider species on different plants and their habitat in greenhouses at Giza governorate	65
2.	Spider species that recorded a new locality and its behavior in vegetable and fruit greenhouses	68
3.	Dominance of spider families on vegetable plants in greenhouse.	69
4.	Effect of the type of vegetable plants on the dominance of spider families in greenhouse	72
5.	Species list with (\lozenge/\lozenge) per type of plants during four months	76
6.	Occurrence of spider families as juveniles of Eggplant plants in greenhouse two times during four months	80
7.	Occurrence of spider families as juveniles of Green bean plants in greenhouse two times during four	
8.	months	81
9.	plants in greenhouse two times during four months Dominance of spider families on fruit trees in	82
	greenhouse	84
10. 11.	Dominance of spider families on Citrus in greenhouse Dominance of spider families on Mango in	86
	greenhouse	86
12.	Spider families occurred on ground of Mango trees	88
13. 14.	Spider families occurred in foliage of Mango trees Occurrence of spider families as Juveniles of Mango	89
14.	trees in greenhouse during six months	90
15.	Species list with $(3/2)$ per number of sampling times of mango trees during six months	92
16.	Development, longevity and life span of <i>N. conducens</i>	
17	males fed on adults <i>D. melanogaster</i> and <i>P. mori</i>	106
17.	Development, longevity and fecundity of <i>N. conducens</i> females fed on adults <i>D. melanogaster</i> and	
	P. mori	108
	1 · mv/ · · · · · · · · · · · · · · · · · · ·	100

18.	Food consumption of male and female of N .	
	conducens fed on whitefly	112
19.	Developmental stages of T. hannoniae males and	
	females fed on Tetranychus urticae	116