

WASTE HEAT UTILIZATION IN WHITE CEMENT PLANTS THROUGH STEAM-ORGANIC CASCSDE RANKIN CYCLE

By

Aly Mahmoud Khater

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Chemical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

WASTE HEAT UTILIZATION IN WHITE CEMENT PLANTS THROUGH STEAM-ORGANIC CASCADE RANKIN CYCLE

By **Aly Mahmoud Khater**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Chemical Engineering

Under the Supervision of

Dr. Ahmed Soliman Mohamed Fawzi

Assoc. Professor of Chemical Engineering Chemical Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Ibrahim Mohamed Ismail

Director of Renewable Energy Engineering Program

Zewail City of Science and Technology

Dr. Tamer Samir Ahmed

Assoc. Professor of Chemical Engineering Chemical Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Waste heat utilization in white cement plants through steam-organic cascade Rankin cycle

 $\mathbf{B}\mathbf{y}$

Aly Mahmoud Khater

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Ahmed Soliman Mohamed Fawzi, Thesis Main Advisor

Prof. Dr. Hanan El-Sersy, Internal Examiner

Prof. Dr. Mamdouh Gadalla, External Examiner (Port Said University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Aly Mahmoud Adel Aly Ibraheem Khater

Date of Birth: 16/12/1989 Nationality: Egyptian

E-mail: <u>Akhater1289@yahoo.com</u>

Phone: 01116656060

Address: Tanta
Registration Date: 1/3/2013
Awarding Date: / / 2018

Degree: Master of science
Department: Chemical Engineering

Supervisors: Assoc. Prof. Dr. Ahmed Soliman Mohamed Fawzi

Dr. Tamer Samir Ahmed

Prof. Dr. Ibrahim Mohamed Ismail (Zewail City of Science and Technology)

Dr. Tamer Samir Ahmed

Examiners: Prof. Hanan Elsersy

Prof. Mamdouh Gadalla

Assoc. Prof. Dr. Ahmed Soliman Mohamed Fawzi

Waste heat utilization in white cement plants through steam-organic cascade Rankin cycle.

Kev Words:

Waste Heat Recovery; energy efficiency; White Cement Industry; Cascade Rankin Cycle; Organic Rankin Cycle.

Summary:

This study is concerned with utilization of waste heat liberated from a white cement plant in order to increase energy efficiency. Steam Rankin cycle was compared with steam-organic combined Rankin cycle (cascade organic Rankin cycle). This comparison depended on both thermodynamic and economic calculations.

Thermodynamic comparison was based on the net power generated, thermal efficiency and irreversibility. Economic comparison was based on total project capital cost and rate of return. This study aimed to maximize the net power generated, thermal efficiency and rate of return; and to minimize irreversibility and capital cost. Three (SRC) and three (S-ORC) different schemes were suggested to recover waste heat from waste streams. Aspen HYSYS v9.0 was used to simulate suggested schemes. Iso-penate and its different isomers- n-penatne, cyclo-pentane, spiro-pentane and 2, 2-dimethylpropane- were selected as working fluids for steam-organic combined Rankin cycle.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriate acknowledged all sources used and have cited them in the references section.

Name: Aly Mahmoud Adel Aly Ibraheem Khater

Date: / / 2018

Signature:

Dedication

For my father; the only person encouraged me to finish this work.

Acknowledgments

All praise is due to Allah alone for the grace and success He granted me till I completed this work.

And many thanks to my respected professors who supervised my study: Prof. Dr. Ibrahim Mohamed Ismail, Dr. Ahmed Soliman and Dr. Tamer Samir for their valuable advice, support and encouragement.

Table of Contents

DISCLAIMER	l
DEDICATION	II
ACKNOWLEDGMENTS	III
LIST OF TABLES	
LIST OF FIGURES	XII
NOMENCULATURE	XVI
ABSTRACT	
CHAPTER 1: INTRODUCTION	
CHAPTER 2 : LITERATURE REVIEW	2
2.1. ENERGY CONSUMPTION AND CO2 EMISSIONS IN CEMENT INDUSTRY	
2.2. CEMENT INDUSTRY	2
2.3. WHITE CEMENT	2
2.4. WASTE HEAT POTENTIAL IN CEMENT INDUSTRY	3
2.5. POWER GENERATION FROM WASTE HEAT RECOVERY	3
2.5.1 STAEM RANKIN CYCLE (SRC)	4
2.5.2. ORGANIC RANKIN CYCLE (ORC)	5
2.5.3 KALINA CYCLE	5
2.5.4 STEAM-ORGANIC COMBINED RANKIN CYCLE OR CASCA GANIC RANKIN CYCLE (S-ORC)	
2.6. SELECTION OF SUITABLE POWER GENERATION CYCLE	6
2.7. ORGANIC RANKIN CYCLE (ORC)	7
2.7.1. OPERATING CONDITIONS OF (ORC)	7
2.7.2. WORKING FLUID CLASSIFICATION	8
2.7.3. WORKING FLUID SELECTION IN (ORC)	10

2.8. STEAM-ORGANIC COMBINED RANKIN CYCLE OR CASCADE OGANIC RANKIN CYCLE (S-ORC)	
CHAPTER 3: METHODOLOGY OF SIMULATION AND ANALYSIS	14
3.1. WATER SCHEMES (SRC)	14
3.2. CASCADE SCHEMES (S-ORC)	18
3.3. COMPARISON PARAMETERS	23
3.3.1. NET POWER OUTPUT	23
3.3.2. THERMAL EFFICIENCY OF THE CYCLE	23
3.3.3. IRREVERSIBILITY	24
3.3.4. CAPITAL COST OF THE CYCLE	25
3.3.5 RATE OF RETURN	25
CHAPTER 4: RESULTS AND DISCUSSION	26
4.1. WATER SCHEMES	26
4.1.1. NET POWER	26
4.1.2. THERMAL EFFICIENCY OF THE CYCLE	28
4.2. CASCADE SCHEMES	32
4.2.1. NET POWER	33
4.2.2. THERMAL EFFICIENCY OF THE CYCLE	49
4.2.3. IRREVERSIBILITY OF SCHEME II'	60
4.2.4. CAPITAL COST OF SCHEME II'	64
4.2.5. RATE OF RETURN ON INVESTMENT FOR SCHEME II'	68
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	72
REFERENCES	73

List of Tables

Table 2.1: Properties considered as performance measures for the design	of ORC
working fluids	11
Table 2.2: Boiling point of water at different pressures	13
Table 3.1: Characterization of the waste heat streams sources	14
Table 3.2: Fluid packages used in the simulation	22
Table 3.3: Parameters used in the simulation of schemes	22
Table 3.4: The critical temperatures, critical pressures and normal boiling point	its of the
selected working fluids based on component list properties of Aspen Hysys V9.	023
Table 4.1: Conditions that gives maximum net power and efficiency in the	ne SRCs
schemes	32
Table 4.2: Critical Pressure of working fluids	33

List of Figures

Figure 2.1: Steam Rankin cycle
Figure 2.2: (Temperature – entropy) diagram of Steam Rankin cycle
Figure 2.3: Power generation system schematic of steam-organic combined Rankin
Cycle (S-ORC)6
Figure 2.4: (Temperature – entropy) diagram for subcritical ORC8
Figure 2.5: (Temperature – entropy) diagram for supercritical ORC with dry fluid8
Figure 2.6.a: (Temperature – entropy) diagram of a wet fluid9
Figure 2.6.b: (Temperature – entropy) diagram of an isentropic fluid9
Figure 2.6.c: (Temperature – entropy) diagram of a dry fluid
Figure 3.1: Scheme 1 used for water
Figure 3.2: Scheme 2 used for water
Figure 3.3: Scheme 3 used for water
Figure 3.4: Cascade Cycle I
Figure 3.5: Cascade Cycle II
Figure 3.6: Cascade Cycle III
Figure 4.1: Effect of turbine inlet temperature on net power at constant pressure-
scheme I
Figure 4.2: Effect of turbine inlet temperature on net power at constant pressure-
scheme II
Figure 4.3: Effect of turbine inlet temperature on net power at constant pressure-
scheme III
Figure 4.4: Comparison of three schemes (I, II, III) according to maximum net
power
Figure 4.5: Effect of turbine inlet temperature on thermal efficiency at constant
pressure- scheme I
Figure 4.6: Effect of turbine inlet pressure on thermal efficiency at constant
temperature- scheme I
Figure 4.7: Effect of turbine inlet temperature on thermal efficiency at constant
pressure- scheme II30
Figure 4.8: Effect of turbine inlet pressure on thermal efficiency at constant
temperature- scheme II
Figure 4.9: Effect of turbine inlet temperature on thermal efficiency at constant
pressure- scheme III
Figure 4.10: Effect of turbine inlet pressure on thermal efficiency at constant
temperature- scheme III
Figure 4.11: Comparison of three schemes according to maximum efficiency32
Figure 4.12: Effect of ORC turbine inlet pressure on the total net power using I-pentane,
scheme I'
Figure 4.13: Effect of ORC turbine inlet pressure on the total net power using N-
pentane scheme I'

Figure 4.14: Effect of ORC turbine inlet pressure on the total net power using cyclo-
Pentane scheme I'
Figure 4.15: Effect of ORC turbine inlet pressure on the total net power using spiro-
Pentane scheme I'
Figure 4.16: Effect of ORC turbine inlet pressure on the total net power using 22-
methylpropane scheme I'
Figure 4.17: Comparison of five working fluids according to maximum total net
power36
Figure 4.18: Effect of ORC turbine inlet pressure on the total net power using I-pentane,
scheme II'
Figure 4.19: Effect of SRC turbine inlet pressure on the total net power using I-pentane,
scheme II'
Figure 4.20: Effect of ORC turbine inlet pressure on the total net power using N-
pentane, scheme II'
Figure 4.21: Effect of SRC turbine inlet pressure on the total net power using N-
pentane, scheme II'
Figure 4.22: Effect of ORC turbine inlet pressure on the total net power using cyclo-
pentane, scheme II'
Fig. 4.23: Effect of SRC turbine inlet pressure on the total net power using cyclo-
pentane, scheme II'
Figure 4.24: Effect of ORC turbine inlet pressure on the total net power using spiro-
pentane, scheme II'
Fig. 4.25: Effect of SRC turbine inlet pressure on the total net power using spiro-
pentane, scheme II'
Figure 4.26: Effect of ORC turbine inlet pressure on the total net power using 2,2-
dimethylpropane, scheme II'
Fig. 4.27: Effect of SRC turbine inlet pressure on the total net power using 2,2-
dimethylpropane, scheme II'
Figure 4.28: Comparison of five working fluids according to maximum total net power-
scheme II'
Figure 4.29: Effect of ORC turbine inlet pressure on the total net power using I-pentane.
scheme III'
Figure 4.30: Effect of SRC turbine inlet pressure on the total net power using I-pentane,
scheme III'
Figure 4.31: Effect of ORC turbine inlet pressure on the total net power using N-
pentane, scheme III'
Figure 4.32: Effect of SRC turbine inlet pressure on the total net power using N-
pentane, scheme III'
Figure 4.33: Effect of ORC turbine inlet pressure on the total net power using cyclo-
pentane, scheme III'
•
Figure 4.34: Effect of SRC turbine inlet pressure on the total net power using cyclopentane, scheme III'
1
Figure 4.35: Effect of ORC turbine inlet pressure on the total net power using spiro-
pentane, scheme III'

Figure 4.36: Effect of SRC turbine inlet pressure on the total net power using spiro-
pentane, scheme III'
Figure 4.37: Effect of ORC turbine inlet pressure on the total net power using 2,2-
dimethylpropane, scheme III'
Figure 4.38: Effect of SRC turbine inlet pressure on the total net power using 2,2-
dimethylpropane, scheme III'
Figure 4.39: Comparison of five working fluids according to maximum total net power-
scheme III'
Figure 4.40: Comparison of three schemes for every working fluid according to
maximum total net power
Figure 4.41: Effect of ORC turbine inlet pressure using I-pentane on thermal efficiency-
scheme I'
Figure 4.42: Effect of ORC turbine inlet pressure using n- pentane on thermal
efficiency- scheme I'
Figure 4.43: Effect of ORC turbine inlet pressure using cyclo-pentane on thermal
efficiency- scheme I'
Figure 4.44: Effect of ORC turbine inlet pressure using spiro-pentane on thermal
efficiency- scheme I'
Figure 4.45: Effect of ORC turbine inlet pressure using 2,2-dimethylpropane on thermal
efficiency- scheme I'
Figure 4.46: Comparison of five working fluids according to maximum thermal
efficiency- scheme I'
Figure 4.47: Effect of ORC turbine inlet pressure using I-pentane on thermal efficiency-
scheme II'
Figure 4.48: Effect of ORC turbine inlet pressure using N-pentane on thermal
efficiency- scheme II'54
Figure 4.49: Effect of ORC turbine inlet pressure using cyclo-pentane on thermal
efficiency- scheme II'
Figure 4.50: Effect of ORC turbine inlet pressure using spiro-pentane on thermal
efficiency- scheme II'
Figure 4.51: Effect of ORC turbine inlet pressure using 2,2-dimethylpropane on thermal
efficiency- scheme II'
Figure 4.52: Comparison of five working fluids according to maximum thermal
efficiency- scheme II'
Figure 4.53: Effect of ORC turbine inlet pressure using I-pentane on thermal efficiency-
scheme III'
Figure 4.54: Effect of ORC turbine inlet pressure using N-pentane on thermal
efficiency- scheme III'
Figure 4.55: Effect of ORC turbine inlet pressure using cyclo-pentane on thermal
efficiency- scheme III'
Figure 4.56: Effect of ORC turbine inlet pressure using spiro-pentane on thermal
efficiency - scheme III'
Figure 4.57: Effect of ORC turbine inlet pressure using 2,2-dimethylpropane on thermal
efficiency- scheme III'

Figure 4.58: Comparison of five working fluids according to maximum thermal
efficiency- scheme III'
Figure 4.59: Comparison of three schemes for every working fluid according to thermal
efficiency
Figure 4.60: Effect of ORC turbine inlet pressure -using I-pentane- on total
irreversibility of the cycle- scheme II'
Figure 4.61: Effect of ORC turbine inlet pressure -using N-pentane- on total
irreversibility of the cycle- scheme II'
Figure 4.62: Effect of ORC turbine inlet pressure -using N-pentane- on total
irreversibility of the cycle- scheme II'
Figure 4.63: Effect of ORC turbine inlet pressure -using spiro-pentane- on total
irreversibility of the cycle- scheme II'
Figure 4.64: Effect of ORC turbine inlet pressure -using 2,2-dimethylpropane - on total
irreversibility of the cycle63
Figure 4.65: Comparison of five working fluids according to irreversibility at maximum
total net power- scheme II' and scheme II64
Figure 4.66: Effect of ORC turbine inlet pressure using I-pentane on total capital cost of
scheme II'
Figure 4.67: Effect of ORC turbine inlet pressure using N-pentane on total capital cost
of scheme II'65
Figure 4.68: Effect of ORC turbine inlet pressure using cyclo-Pentane on total capital
cost of scheme II'
Figure 4.69: Effect of ORC turbine inlet pressure using spiro-Pentane on total capital
cost of scheme II'
Figure 4.70: Effect of ORC turbine inlet pressure using 2,2-dimethylpropane on total
capital cost of scheme II'67
Figure 4.71: Comparison of five working fluids according to irreversibility at maximum
total net power- scheme II'
Figure 4.72: Effect of ORC turbine inlet pressure using I-pentane on rate of return on
investment of scheme II'
Figure 4.73: Effect of ORC turbine inlet pressure using N-pentane on rate of return on
investment of scheme II'
Figure 4.74: Effect of ORC turbine inlet pressure using cyclo-Pentane on rate of return
on investment of scheme II'
Figure 4.75: Effect of ORC turbine inlet pressure using spiro-Pentane on rate of return
on investment of scheme II'
Figure 4.76: Effect of ORC turbine inlet pressure using 2,2-dimethylpropane on rate of
return on investment of scheme II'
Figure 4.77: Comparison of five working fluids according to rate of return on
investment at maximum total net power- scheme II'

Nomenclature

H Specific Enthalpy [kJ/kg]

I_{tot} Total Irreversibility [kW]

m° Mass Flow Rate [kg/S]

P_{net} Net Power [kWh]

P_c Critical Pressure [bar]

Q_{in} Amount of Heat Input [kW]

S_{gen} Entropy Generation Rate [kW/K]

T_c Critical Temperature [K]

T_{Sur} Surrounding Temperature [K]

Latin

 η_{th} Thermal Efficiency

Abbreviations

GDP Gross Domestic Product

Mtoe Million Tons of Oil Equivalent

ORC Organic Rankin Cycle

SRC Steam Rankin Cycle

S-ORC Steam-Organic Combined Rankin Cycle

WHR Waste Heat Recovery

Subscripts

I Ith Component of The System