

HARDWARE IMPLEMENTATION OF A SIMPLIFIED RADIX-4 SUCCESSIVE CANCELLATION DECODER FOR POLAR CODES

Ву

Hussein Galal Hussein Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

HARDWARE IMPLEMENTATION OF A SIMPLIFIED RADIX-4 SUCCESSIVE CANCELLATION DECODER FOR POLAR CODES

Ву

Hussein Galal Hussein Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Hossam Aly Hassan Fahmy

Professor of Electronics and Communications Engineering Electronics and Communications Engineering Department Faculty of Engineering , Cairo University

HARDWARE IMPLEMENTATION OF A SIMPLIFIED RADIX-4 SUCCESSIVE CANCELLATION DECODER FOR POLAR CODES

Ву

Hussein Galal Hussein Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee

Prof. Hossam Aly Hassan Fahmy, Thesis Main Advisor

Prof. Mohamed Mohamed Khairy, Internal Examiner

Assoc. Prof. Karim Gomaa Seddik, External Examiner The Electronics and Communications Engineering Department, School of Sciences and Engineering, AUC

FACULTY OF ENGINEERING , CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer's Hussein Galal Hussein Hassan

Name:

Date of Birth: 16/09/1989 Nationality: Egyptian

E-mail: hussein.galal@ieee.org

Phone: 01066397911

Address: 11433

Registration 01/10/2013

Date:

Awarding 2019

Date:

Degree: Master of Science

Department: Electronics and Communications

Engineering

Supervisors:

Prof. Hossam Aly Hassan Fahmy

Examiners:

Prof. Hossam Aly Hassan Fahmy Prof. Mohamed Mohamed Khairy Assoc. Prof. Karim Gomaa Seddik Electronics and Communications

Engineering Department,

School of Sciences and Engineering,

AUC

(Thesis main advisor) (Internal examiner) (External examiner)

Title of Thesis:

HARDWARE IMPLEMENTATION OF A SIMPLIFIED RADIX-4 SUCCESSIVE CANCELLATION DECODER FOR POLAR CODES

Key Words:

Polar codes; Radix-4; partial sum lookahead; simplified successive cancellation decoding; special subcodes;

Summary:

In this thesis, we proposed a latency reduced decoder for the polar codes, this decoder is based on the successive cancellation decoding. The main idea is based on the usage of a radix-4 processing unit to calculate intermediate LLR values, a new last stage processing unit that is capable of decoding more than 4 bits in a cycle and the usage of the partial sum lookahead technique to improve hardware utilization and decrease the overall latency.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Hussein Galal Hussein Hassan	Date:
Signature:		

Dedication

I would like to dedicate this thesis for to my parents, my sister, my wife, and my daughters: Malak and Yara for their care, support and extreme patience.

Acknowledgments

I would like to express my gratitude to my advisor Dr. Hossam A. H. Fahmy for his continuous help and patient guidance.

I would like also to thank Dr. Amr M. Hussien for his detailed support and extreme patience till reaching this point.

I would like to thank my family for their support and patience throughout the long journey of my Masters studies.

Table of Contents

Li	st of	Tables	vi
Li	st of	Figures	vii
Li	st of	Abbreviations	ix
Al	bstra	$\operatorname{\mathbf{ct}}$	Х
Pι	ıblica	ations	X
1	Intr	oduction	-
	1.1	Introduction	
	1.2	Channel Coding	-
	1.3	Channel Capacity	٩
	1.4	Is coding dead?	ç
	1.5	Research opportunity in polar codes	•
	1.6	Conclusion	4
2	Lite	rature Review	5
	2.1	Introduction	٦
	2.2	Channel polarization	Ę
		2.2.1 Mutual information	Ę
		2.2.2 Bhattacharyya parameter	6
	2.3	Polar encoders	6
		2.3.1 Reed-Muller vs Polar codes	6
		2.3.2 Reed-Muller vs Polar codes performance on BEC	6
		2.3.3 Polar encoders implementations	8
		2.3.3.1 Combinational polar encoder	16
		2.3.3.2 Pipelined polar encoder	16
	2.4	Polar decoders	18
		2.4.1 Successive cancellation decoders	18
		2.4.2 Belief propagation decoders	18
		2.4.3 Successive cancellation list decoders (SCL)	2
		2.4.4 Multi-bit successive cancellation decoding	22
	2.5	Latency reduction efforts	22
	2.6	Literature survey	23
	2.7	Thesis proposal	23
	2.8	conclusion	23
3	The	ory	25
	3.1	Introduction	25
	3.2	Channel coding theory	25
		3.2.1 Channel combining	25
		3 2 2 16 bit encoder	27

	0.0	3.2.3		plitting	27
	3.3			ation decoders	29
	9.4	3.3.1		on derivation	29 33
3.4 Proposed Architecture					
		_			33
		3.4.2		processing circuit	35
		3.4.3		processing unit	$\frac{35}{26}$
				Case 1: All bits are frozen	36
				ease 2: All bits are frozen, u_3 is used	36
				ease 3: u_0 , u_1 are frozen, u_2 , u_3 are not frozen	36
				ease 4: u_0 , u_2 are frozen, u_1 , u_3 are not frozen	36
				ease 5: bit u_0 is only frozen	36
				ease 6: No frozen bits	37
		3.4.4		sion unit implementation	38
		3.4.5	_	b-codes decoding	38
				Criterion 1: All bits are frozen	38
				Criterion 2: All bits are frozen except last bit	38
				Criterion 3: All bits are frozen except middle and	
				ast bits	42
				Criterion 4: All bits are frozen except the quarters	
				of the sub code	42
				Criterion 5: All bits are frozen except the last 2 bits	43
			3.4.5.6	Criterion 6: All bits are frozen except the last 4 bits	43
			3.4.5.7	Criterion 7: No frozen bits	43
		3.4.6		m calculation	44
		3.4.7	Partial sur	m lookahead	44
		3.4.8	Memory a	rchitecture	49
	3.5	Conclu	ision		51
4	BEI	R simu	lation res	ults	53
	4.1	BER s	imulations	results on different channel models	53
	4.2	BER s	imulations	results on a binary erasure channel	53
	4.3	BER s	imulations	results on AWGN channel	58
5	Results			63	
	5.1	Result	S		63
		5.1.1	Reducing	decoding latency	63
		5.1.2	_	rovement	64
		5.1.3		lementation	64
6 Conclusion		1		67	
	6.1	Conclu	ision		67
	6.2	Future	work		67
D	efere				69
FX ((.6)				114

Appendix A Important matlab and verilog codes			
A.1	Choosing the frozen bits	73	
	A.1.1 calculating Bhattacharyya parameter	73	
	A.1.2 Setting the pattern array ufixed	73	
A.2	Processing unit verilog implementation	74	
A.3	Last stage Processing unit verilog implementation	77	

List of Tables

2.1	BER for polar codes and Reed-Muller(N,K) = $(32,16)$ Codes	7
2.2	BER for Reed-Muller $N=256 \text{ runs}=1000 \text{ Iterations}=60 \text{ on BEC}$.	9
2.3	BER for polar codes $N=256 \text{ runs}=1000 \text{ Iterations}=60 \text{ on BEC}$.	10
2.4	BER for Reed-Muller N=256 runs=1000 Iterations = 60 on BSC	12
2.5	BER for polar codes N=256 runs=1000 Iterations = 60 on BSC $$	14
5.1	16-bit Special sub-code occurrences in different codeword length with	
	code rate $\frac{1}{2}$ and the corresponding latency gain	63
5.2	Latency Reduction in the proposed architecture (clock cycles)	63
5.3	Results of (1024, 512) SC decoder implementation quantized at 5-bits	64

List of Figures

1.1	A simple communication system	2
2.1 2.2	BER for polar codes and Reed-Muller(N,K) = $(32,16)$ Codes BER for Reed-Muller N=256 runs=1000 Iterations = 60 on BEC .	7
2.3	BER for polar codes $N=256$ runs=1000 Iterations = 60 on BEC BER for Reed-Muller $N=256$ runs=1000 Iterations = 60 on BSC .	11
2.4 2.5	BER for polar codes $N=256$ runs=1000 Iterations = 60 on BSC . BER for polar codes $N=256$ runs=1000 Iterations = 60 on BSC	13 15
2.6	8-bit combinational (8,4)encoder	16
2.7	8-bit pipelined (8,4)encoder	17
2.8	8-bit pipelined (8,4)encoder using G_4 matrix G_2 matrix and an AND	
	array	19
2.9	N generation matrix composed of AND array , $G_{\frac{N}{2}}$ and G_N	20
	N generation matrix composed of G_2 and multiple AND arrays	20
2.11	Decoding paths of N=4 codeword, List size L=3	22
3.1	Combining 2 W_1 channels to obtain W_2	26
3.2	Combining 4 W_1 channels to obtain W_4 by using the generated W_2	26
3.3	Combining 16 W_1 channels to obtain W_{16}	28
3.4	16-bit successive cancellation decoder data flow graph	30
3.5	2-bit Kronecker product	31
3.6	A 4-bit polar encoder / decoder	33
3.7 3.8	A radix-4 architecture to 16-bit SC decoder	34 39
3.9	Last stage radix-4 processing unit	40
3.10	Pipelined partial sum calculation circuit for 8-bit successive cancellation decoder	45
3.11	Pipelined partial sum calculation circuit for 8-bit successive cancella-	40
0.11	tion decoder using G_4 generator	46
3.12	Pipelined partial sum calculation circuit for 8-bit successive cancella-	
2 12	tion decoder using the general form generation matrix	47
5.15	successive cancellation decoder using the general form generation	
	matrix	48
3.14	A comparison between Radix-4 SC decoding and Radix-4 SC with	10
	partial sum lookahead for a 64-bit decoder	50
4.1	BER with a polar codes length N 16 on a binary erasure channel	54
4.2	BER with a polar codes length N 64 on a binary erasure channel	55
4.3	BER with a polar codes length N 256 on a binary erasure channel .	56
4.4	BER with a polar codes length N 1024 on a binary erasure channel	57
4.5	BER with a polar codes length N 16 on an AWGN channel	58
4.6	BER with a polar codes length N 64 on an AWGN channel	59
4.7	BER with a polar codes length N 256 on an AWGN channel	60
4.8	BER with a polar codes length N 1024 on an AWGN channel	61

List of Abbreviations

C Channel capacity

SC Successive Cancellation decoder

SCL Successive Cancellation List decoder

LR Likelihood Ratio
LLR Log Likelihood Ratio
LTE Long Term Evolution

BER Bit Error Rate

BEC Binary Erasure Channel

B-DMC Binary Discrete Memoryless Channel

AWGN Additive White Gaussian Noise

BP Belief Propagation decoder Z(W) Bhattacharyya coefficient

I(W) Mutual informationW Transition probabilityPU Processing Unit

LSPU Last Stage Processing Unit

Abstract

Polar codes recently received high attention by researchers as proven to approach channel capacity at higher codeword length. However, the decoding latency grows significantly with codeword length, rendering implementation for latency constrained applications impossible. To tackle this problem, this thesis proposes a polar decoder architecture based on radix-4 processing units with a special last stage processing unit to decode up to 16 bits in the same clock. In addition, it proposes decoding extended special sub-codes to reduce latency. Moreover, it uses partial sum look-ahead technique, resulting in a high throughput with low latency decoding architecture.

Publications

Hassan, Hussein GH, Amr MA Hussien, and Hossam AH Fahmy. "Radix-4 successive cancellation decoding of polar codes with partial sum lookahead." Microelectronics (ICM), 2017 29th International Conference on. IEEE, 2017.

Hassan, Hussein GH, Amr MA Hussien, and Hossam AH Fahmy. "A simplified radix-4 successive cancellation decoder with partial sum lookahead." AEU-International Journal of Electronics and Communications 96 (2018): 267-272.